imtoken中文官网版下载|ethernet帧的地址字段

作者: imtoken中文官网版下载
2024-03-14 19:16:19

以太网帧结构详解 - 知乎

以太网帧结构详解 - 知乎首发于网络协议详解切换模式写文章登录/注册以太网帧结构详解nwatch计算机的世界真是太精彩了!!!前言20世纪60年代以来,计算机网络得到了飞速发展。各大厂商和标准组织为了在数据通信网络领域占据主导地位,纷纷推出了各自的网络架构体系和标准,如IBM公司的SNA协议,Novell公司的IPX/SPX协议,以及广泛流行的OSI参考模型和TCP/IP协议。同时,各大厂商根据这些协议生产出了不同的硬件和软件。标准组织和厂商的共同努力促进了网络技术的快速发展和网络设备种类的迅速增长。网络通信中,“协议”和“标准”这两个词汇常常可以混用。同时,协议或标准本身又常常具有层次的特点。一般地,关注于逻辑数据关系的协议通常被称为上层协议,而关注于物理数据流的协议通常被称为低层协议。IEEE 802就是一套用来管理物理数据流在局域网中传输的标准,包括在局域网中传输物理数据的802.3以太网标准。还有一些用来管理物理数据流在使用串行介质的广域网中传输的标准,如帧中继FR(Frame Relay),高级数据链路控制HDLC(High-Level Data Link Control),异步传输模式ATM(Asynchronous Transfer Mode)。分层模型- OSI不同的协议栈用于定义和管理不同网络的数据转发规则。国际标准化组织ISO于1984年提出了OSI RM(Open System Interconnection Reference Model,开放系统互连参考模型)。OSI 参考模型很快成为了计算机网络通信的基础模型。OSI参考模型具有以下优点:简化了相关的网络操作;提供了不同厂商之间的兼容性;促进了标准化工作;结构上进行了分层;易于学习和操作。OSI参考模型各个层次的基本功能如下:1.物理层: 在设备之间传输比特流,规定了电平、速度和电缆针脚。2.数据链路层:将比特组合成字节,再将字节组合成帧,使用链路层地址(以太网使用MAC地址)来访问介质,并进行差错检测。3.网络层:提供逻辑地址,供路由器确定路径。4.传输层:提供面向连接或非面向连接的数据传递以及进行重传前的差错检测。5.会话层:负责建立、管理和终止表示层实体之间的通信会话。该层的通信由不同设备中的应用程序之间的服务请求和响应组成。6.表示层:提供各种用于应用层数据的编码和转换功能,确保一个系统的应用层发送的数据能被另一个系统的应用层识别。7.应用层:OSI参考模型中最靠近用户的一层,为应用程序提供网络服务。分层模型– TCP/IPTCP/IP模型同样采用了分层结构,层与层相对独立但是相互之间也具备非常密切的协作关系。TCP/IP模型将网络分为四层。TCP/IP模型不关注底层物理介质,主要关注终端之间的逻辑数据流转发。TCP/IP模型的核心是网络层和传输层:网络层解决网络之间的逻辑转发问题,传输层保证源端到目的端之间的可靠传输。最上层的应用层通过各种协议向终端用户提供业务应用。数据封装应用数据需要经过TCP/IP每一层处理之后才能通过网络传输到目的端,每一层上都使用该层的协议数据单元PDU(Protocol Data Unit)彼此交换信息。不同层的PDU中包含有不同的信息,因此PDU在不同层被赋予了不同的名称。如上层数据在传输层添加TCP报头后得到的PDU被称为Segment(数据段 )数据段被传递给网络层,网络层添加IP报头得到的PDU被称为Packet(数据包)数据包被传递到数据链路层,封装数据链路层报头得到的PDU被称为Frame(数据帧)最后,帧被转换为比特(物理层)通过网络介质传输。这种协议栈逐层向下传递数据,并添加报头和报尾的过程称为封装。终端之间的通信数据链路层控制数据帧在物理链路上传输。数据包在以太网物理介质上传播之前必须封装头部和尾部信息。封装后的数据包称为称为数据帧,数据帧中封装的信息决定了数据如何传输。以太网上传输的数据帧有两种格式,选择哪种格式由TCP/IP协议簇中的网络层决定。帧格式以太网上使用两种标准帧格式。第一种是上世纪80年代初提出的DIX v2格式,即Ethernet II帧格式。Ethernet II后来被IEEE 802标准接纳,并写进了IEEE 802.3x-1997的3.2.6节。第二种是1983年提出的IEEE 802.3格式。这两种格式的主要区别在于,Ethernet II格式中包含一个Type字段,标识以太帧处理完成之后将被发送到哪个上层协议进行处理。IEEE 802.3格式中,同样的位置是长度字段。不同的Type字段值可以用来区别这两种帧的类型当Type字段值小于等于1500(或者十六进制的0x05DC)时,帧使用的是IEEE 802.3格式。当Type字段值大于等于1536 (或者十六进制的0x0600)时,帧使用的是Ethernet II格式。以太网中大多数的数据帧使用的是Ethernet II格式。以太帧中还包括源和目的MAC地址,分别代表发送者的MAC和接收者的MAC,此外还有帧校验序列字段,用于检验传输过程中帧的完整性。Ethernet_II 帧格式Ethernet_II 帧类型值大于等于1536 (0x0600)以太网数据帧的长度在64-1518字节之间Ethernet_II的帧中各字段说明如下:DMAC(Destination MAC)是目的MAC地址。DMAC字段长度为6个字节,标识帧的接收者。SMAC(Source MAC)是源MAC地址。SMAC字段长度为6个字节,标识帧的发送者。类型字段(Type)用于标识数据字段中包含的高层协议,该字段长度为2个字节。类型字段取值为0x0800的帧代表IP协议帧;类型字段取值为0806的帧代表ARP协议帧。数据字段(Data)是网络层数据,最小长度必须为46字节以保证帧长至少为64字节,数据字段的最大长度为1500字节。循环冗余校验字段(FCS)提供了一种错误检测机制。该字段长度为4个字节。IEEE802.3 帧格式IEEE 802.3 帧长度字段值小于等于1500 (0x05DC)IEEE 802.3帧格式类似于Ethernet_II帧,只是Ethernet_II帧的Type域被802.3帧的Length域取代,并且占用了Data字段的8个字节作为LLC和SNAP字段。Length字段定义了Data字段包含的字节数。逻辑链路控制LLC(Logical Link Control)由目的服务访问点DSAP(Destination Service Access Point)、源服务访问点SSAP(Source Service Access Point)和Control字段组成。SNAP(Sub-network Access Protocol)由机构代码(Org Code)和类型(Type)字段组成。Org code三个字节都为0。Type字段的含义与Ethernet_II帧中的Type字段相同。IEEE802.3帧根据DSAP和SSAP字段的取值又可分为以下几类:当DSAP和SSAP都取特定值0xff时,802.3帧就变成了Netware-ETHERNET帧,用来承载NetWare类型的数据。当DSAP和SSAP都取特定值0xaa时,802.3帧就变成了ETHERNET_SNAP帧。ETHERNET_SNAP帧可以用于传输多种协议。DSAP和SSAP其他的取值均为纯IEEE802.3帧。数据帧传输数据链路层基于MAC地址进行帧的传输以太网在二层链路上通过MAC地址来唯一标识网络设备,并且实现局域网上网络设备之间的通信。MAC地址也叫物理地址,大多数网卡厂商把MAC地址烧入了网卡的ROM中。发送端使用接收端的MAC地址作为目的地址。以太帧封装完成后会通过物理层转换成比特流在物理介质上传输。以太网的MAC地址MAC地址由两部分组成,分别是供应商代码和序列号。其中前24位代表该供应商代码,由IEEE管理和分配。剩下的24位序列号由厂商自己分配。如同每一个人都有一个名字一样,每一台网络设备都用物理地址来标识自己,这个地址就是MAC地址。网络设备的MAC地址是全球唯一的。MAC地址长度为48比特,通常用十六进制表示。MAC地址包含两部分:前24比特是组织唯一标识符(OUI,Organizationally Unique Identifier),由IEEE统一分配给设备制造商。例如,华为的网络产品的MAC地址前24比特是0x00e0fc。后24位序列号是厂商分配给每个产品的唯一数值,由各个厂商自行分配(这里所说的产品可以是网卡或者其他需要MAC地址的设备)。数据帧的发送和接收单播局域网上的帧可以通过三种方式发送。第一种是单播,指从单一的源端发送到单一的目的端。每个主机接口由一个MAC地址唯一标识,MAC地址的OUI中,第一字节第8个比特表示地址类型。对于主机MAC地址,这个比特固定为0,表示目的MAC地址为此MAC地址的帧都是发送到某个唯一的目的端。在冲突域中,所有主机都能收到源主机发送的单播帧,但是其他主机发现目的地址与本地MAC地址不一致后会丢弃收到的帧,只有真正的目的主机才会接收并处理收到的帧。广播第二种发送方式是广播,表示帧从单一的源发送到共享以太网上的所有主机。广播帧的目的MAC地址为十六进制的FF:FF:FF:FF:FF:FF,所有收到该广播帧的主机都要接收并处理这个帧。广播方式会产生大量流量,导致带宽利用率降低,进而影响整个网络的性能。当需要网络中的所有主机都能接收到相同的信息并进行处理的情况下,通常会使用广播方式。组播第三种发送方式为组播,组播比广播更加高效。组播转发可以理解为选择性的广播,主机侦听特定组播地址,接收并处理目的MAC地址为该组播MAC地址的帧。组播MAC地址和单播MAC地址是通过第一字节中的第8个比特区分的。组播MAC地址的第8个比特为1,而单播MAC地址的第8个比特为0。当需要网络上的一组主机(而不是全部主机)接收相同信息,并且其他主机不受影响的情况下,通常会使用组播方式。发送与接收当主机接收到的数据帧所包含的目的MAC地址是自己时,会把以太网封装剥掉后送往上层协议。帧从主机的物理接口发送出来后,通过传输介质传输到目的端。共享网络中,这个帧可能到达多个主机。主机检查帧头中的目的MAC地址,如果目的MAC地址不是本机MAC地址,也不是本机侦听的组播或广播MAC地址,则主机会丢弃收到的帧。如果目的MAC地址是本机MAC地址,则接收该帧,检查帧校验序列(FCS)字段,并与本机计算的值对比来确定帧在传输过程中是否保持了完整性。如果帧的FCS值与本机计算的值不同,主机会认为帧已被破坏,并会丢弃该帧。如果该帧通过了FCS校验,则主机会根据帧头部中的Type字段来确定将帧发送给上层哪个协议处理。实际数据包分析:ARP类型数据包其他类型数据包:原文链接;以太网帧结构详解_曌赟的博客-CSDN博客发布于 2020-10-12 11:16计算机网络网络通信数据通信​赞同 53​​1 条评论​分享​喜欢​收藏​申请转载​文章被以下专栏收录网络协议详解网络协

以太网帧结构详解 - 知乎

以太网帧结构详解 - 知乎首发于网络协议详解切换模式写文章登录/注册以太网帧结构详解nwatch计算机的世界真是太精彩了!!!前言20世纪60年代以来,计算机网络得到了飞速发展。各大厂商和标准组织为了在数据通信网络领域占据主导地位,纷纷推出了各自的网络架构体系和标准,如IBM公司的SNA协议,Novell公司的IPX/SPX协议,以及广泛流行的OSI参考模型和TCP/IP协议。同时,各大厂商根据这些协议生产出了不同的硬件和软件。标准组织和厂商的共同努力促进了网络技术的快速发展和网络设备种类的迅速增长。网络通信中,“协议”和“标准”这两个词汇常常可以混用。同时,协议或标准本身又常常具有层次的特点。一般地,关注于逻辑数据关系的协议通常被称为上层协议,而关注于物理数据流的协议通常被称为低层协议。IEEE 802就是一套用来管理物理数据流在局域网中传输的标准,包括在局域网中传输物理数据的802.3以太网标准。还有一些用来管理物理数据流在使用串行介质的广域网中传输的标准,如帧中继FR(Frame Relay),高级数据链路控制HDLC(High-Level Data Link Control),异步传输模式ATM(Asynchronous Transfer Mode)。分层模型- OSI不同的协议栈用于定义和管理不同网络的数据转发规则。国际标准化组织ISO于1984年提出了OSI RM(Open System Interconnection Reference Model,开放系统互连参考模型)。OSI 参考模型很快成为了计算机网络通信的基础模型。OSI参考模型具有以下优点:简化了相关的网络操作;提供了不同厂商之间的兼容性;促进了标准化工作;结构上进行了分层;易于学习和操作。OSI参考模型各个层次的基本功能如下:1.物理层: 在设备之间传输比特流,规定了电平、速度和电缆针脚。2.数据链路层:将比特组合成字节,再将字节组合成帧,使用链路层地址(以太网使用MAC地址)来访问介质,并进行差错检测。3.网络层:提供逻辑地址,供路由器确定路径。4.传输层:提供面向连接或非面向连接的数据传递以及进行重传前的差错检测。5.会话层:负责建立、管理和终止表示层实体之间的通信会话。该层的通信由不同设备中的应用程序之间的服务请求和响应组成。6.表示层:提供各种用于应用层数据的编码和转换功能,确保一个系统的应用层发送的数据能被另一个系统的应用层识别。7.应用层:OSI参考模型中最靠近用户的一层,为应用程序提供网络服务。分层模型– TCP/IPTCP/IP模型同样采用了分层结构,层与层相对独立但是相互之间也具备非常密切的协作关系。TCP/IP模型将网络分为四层。TCP/IP模型不关注底层物理介质,主要关注终端之间的逻辑数据流转发。TCP/IP模型的核心是网络层和传输层:网络层解决网络之间的逻辑转发问题,传输层保证源端到目的端之间的可靠传输。最上层的应用层通过各种协议向终端用户提供业务应用。数据封装应用数据需要经过TCP/IP每一层处理之后才能通过网络传输到目的端,每一层上都使用该层的协议数据单元PDU(Protocol Data Unit)彼此交换信息。不同层的PDU中包含有不同的信息,因此PDU在不同层被赋予了不同的名称。如上层数据在传输层添加TCP报头后得到的PDU被称为Segment(数据段 )数据段被传递给网络层,网络层添加IP报头得到的PDU被称为Packet(数据包)数据包被传递到数据链路层,封装数据链路层报头得到的PDU被称为Frame(数据帧)最后,帧被转换为比特(物理层)通过网络介质传输。这种协议栈逐层向下传递数据,并添加报头和报尾的过程称为封装。终端之间的通信数据链路层控制数据帧在物理链路上传输。数据包在以太网物理介质上传播之前必须封装头部和尾部信息。封装后的数据包称为称为数据帧,数据帧中封装的信息决定了数据如何传输。以太网上传输的数据帧有两种格式,选择哪种格式由TCP/IP协议簇中的网络层决定。帧格式以太网上使用两种标准帧格式。第一种是上世纪80年代初提出的DIX v2格式,即Ethernet II帧格式。Ethernet II后来被IEEE 802标准接纳,并写进了IEEE 802.3x-1997的3.2.6节。第二种是1983年提出的IEEE 802.3格式。这两种格式的主要区别在于,Ethernet II格式中包含一个Type字段,标识以太帧处理完成之后将被发送到哪个上层协议进行处理。IEEE 802.3格式中,同样的位置是长度字段。不同的Type字段值可以用来区别这两种帧的类型当Type字段值小于等于1500(或者十六进制的0x05DC)时,帧使用的是IEEE 802.3格式。当Type字段值大于等于1536 (或者十六进制的0x0600)时,帧使用的是Ethernet II格式。以太网中大多数的数据帧使用的是Ethernet II格式。以太帧中还包括源和目的MAC地址,分别代表发送者的MAC和接收者的MAC,此外还有帧校验序列字段,用于检验传输过程中帧的完整性。Ethernet_II 帧格式Ethernet_II 帧类型值大于等于1536 (0x0600)以太网数据帧的长度在64-1518字节之间Ethernet_II的帧中各字段说明如下:DMAC(Destination MAC)是目的MAC地址。DMAC字段长度为6个字节,标识帧的接收者。SMAC(Source MAC)是源MAC地址。SMAC字段长度为6个字节,标识帧的发送者。类型字段(Type)用于标识数据字段中包含的高层协议,该字段长度为2个字节。类型字段取值为0x0800的帧代表IP协议帧;类型字段取值为0806的帧代表ARP协议帧。数据字段(Data)是网络层数据,最小长度必须为46字节以保证帧长至少为64字节,数据字段的最大长度为1500字节。循环冗余校验字段(FCS)提供了一种错误检测机制。该字段长度为4个字节。IEEE802.3 帧格式IEEE 802.3 帧长度字段值小于等于1500 (0x05DC)IEEE 802.3帧格式类似于Ethernet_II帧,只是Ethernet_II帧的Type域被802.3帧的Length域取代,并且占用了Data字段的8个字节作为LLC和SNAP字段。Length字段定义了Data字段包含的字节数。逻辑链路控制LLC(Logical Link Control)由目的服务访问点DSAP(Destination Service Access Point)、源服务访问点SSAP(Source Service Access Point)和Control字段组成。SNAP(Sub-network Access Protocol)由机构代码(Org Code)和类型(Type)字段组成。Org code三个字节都为0。Type字段的含义与Ethernet_II帧中的Type字段相同。IEEE802.3帧根据DSAP和SSAP字段的取值又可分为以下几类:当DSAP和SSAP都取特定值0xff时,802.3帧就变成了Netware-ETHERNET帧,用来承载NetWare类型的数据。当DSAP和SSAP都取特定值0xaa时,802.3帧就变成了ETHERNET_SNAP帧。ETHERNET_SNAP帧可以用于传输多种协议。DSAP和SSAP其他的取值均为纯IEEE802.3帧。数据帧传输数据链路层基于MAC地址进行帧的传输以太网在二层链路上通过MAC地址来唯一标识网络设备,并且实现局域网上网络设备之间的通信。MAC地址也叫物理地址,大多数网卡厂商把MAC地址烧入了网卡的ROM中。发送端使用接收端的MAC地址作为目的地址。以太帧封装完成后会通过物理层转换成比特流在物理介质上传输。以太网的MAC地址MAC地址由两部分组成,分别是供应商代码和序列号。其中前24位代表该供应商代码,由IEEE管理和分配。剩下的24位序列号由厂商自己分配。如同每一个人都有一个名字一样,每一台网络设备都用物理地址来标识自己,这个地址就是MAC地址。网络设备的MAC地址是全球唯一的。MAC地址长度为48比特,通常用十六进制表示。MAC地址包含两部分:前24比特是组织唯一标识符(OUI,Organizationally Unique Identifier),由IEEE统一分配给设备制造商。例如,华为的网络产品的MAC地址前24比特是0x00e0fc。后24位序列号是厂商分配给每个产品的唯一数值,由各个厂商自行分配(这里所说的产品可以是网卡或者其他需要MAC地址的设备)。数据帧的发送和接收单播局域网上的帧可以通过三种方式发送。第一种是单播,指从单一的源端发送到单一的目的端。每个主机接口由一个MAC地址唯一标识,MAC地址的OUI中,第一字节第8个比特表示地址类型。对于主机MAC地址,这个比特固定为0,表示目的MAC地址为此MAC地址的帧都是发送到某个唯一的目的端。在冲突域中,所有主机都能收到源主机发送的单播帧,但是其他主机发现目的地址与本地MAC地址不一致后会丢弃收到的帧,只有真正的目的主机才会接收并处理收到的帧。广播第二种发送方式是广播,表示帧从单一的源发送到共享以太网上的所有主机。广播帧的目的MAC地址为十六进制的FF:FF:FF:FF:FF:FF,所有收到该广播帧的主机都要接收并处理这个帧。广播方式会产生大量流量,导致带宽利用率降低,进而影响整个网络的性能。当需要网络中的所有主机都能接收到相同的信息并进行处理的情况下,通常会使用广播方式。组播第三种发送方式为组播,组播比广播更加高效。组播转发可以理解为选择性的广播,主机侦听特定组播地址,接收并处理目的MAC地址为该组播MAC地址的帧。组播MAC地址和单播MAC地址是通过第一字节中的第8个比特区分的。组播MAC地址的第8个比特为1,而单播MAC地址的第8个比特为0。当需要网络上的一组主机(而不是全部主机)接收相同信息,并且其他主机不受影响的情况下,通常会使用组播方式。发送与接收当主机接收到的数据帧所包含的目的MAC地址是自己时,会把以太网封装剥掉后送往上层协议。帧从主机的物理接口发送出来后,通过传输介质传输到目的端。共享网络中,这个帧可能到达多个主机。主机检查帧头中的目的MAC地址,如果目的MAC地址不是本机MAC地址,也不是本机侦听的组播或广播MAC地址,则主机会丢弃收到的帧。如果目的MAC地址是本机MAC地址,则接收该帧,检查帧校验序列(FCS)字段,并与本机计算的值对比来确定帧在传输过程中是否保持了完整性。如果帧的FCS值与本机计算的值不同,主机会认为帧已被破坏,并会丢弃该帧。如果该帧通过了FCS校验,则主机会根据帧头部中的Type字段来确定将帧发送给上层哪个协议处理。实际数据包分析:ARP类型数据包其他类型数据包:原文链接;以太网帧结构详解_曌赟的博客-CSDN博客发布于 2020-10-12 11:16计算机网络网络通信数据通信​赞同 53​​1 条评论​分享​喜欢​收藏​申请转载​文章被以下专栏收录网络协议详解网络协

【入门级】网络基础知识——以太网帧结构 - 知乎

【入门级】网络基础知识——以太网帧结构 - 知乎切换模式写文章登录/注册【入门级】网络基础知识——以太网帧结构长沙众元网络用心服务好每一位客户OSI RM ( Open System Interconnection Reference Model,开放系统互连参考模型)。OSI 参考模型很快成为了计算机网络通信的基础模型。关注我,为你开拓更多知识点! 私信留言“知识”在线答疑哦!OSI参考模型具有以下优点:简化了相关的网络操作;提供了不同厂商之间的兼容性;促进了标准化工作;结构上进行了分层;易于学习和操作。关注我,为你开拓更多知识点! 私信留言“知识”在线答疑哦!OSI参考模型各个层次的基本功能如下:物理层: 在设备之间传输比特流,规定了电平、速度和电缆针脚。数据链路层:将比特组合成字节,再将字节组合成帧,使用链路层地址(以太网使用MAC地址)来访问介质,并进行差错检测。网络层:提供逻辑地址,供路由器确定路径。传输层:提供面向连接或非面向连接的数据传递以及进行重传前的差错检测。会话层:负责建立、管理和终止表示层实体之间的通信会话。该层的通信由不同设备中的应用程序之间的服务请求和响应组成。表示层:提供各种用于应用层数据的编码和转换功能,确保一个系统的应用层发送的数据能被另一个系统的应用层识别。应用层:OSI参考模型中最靠近用户的一层,为应用程序提供网络服务。TCP/IP模型同样采用了分层结构,层与层相对独立但是相互之间也具备非常密切的协作关系。关注我,为你开拓更多知识点! 私信留言“知识”在线答疑哦!TCP/IP模型将网络分为四层。TCP/IP模型不关注底层物理介质,主要关注终端之间的逻辑数据流转发。TCP/IP模型的核心是网络层和传输层:网络层解决网络之间的逻辑转发问题,传输层保证源端到目的端之间的可靠传输。最上层的应用层通过各种协议向终端用户提供业务应用。数据的封装: 应用数据需要经过TCP/IP每一层处理之后才能通过网络传输到目的端,每一层上都使用该层的协议数据单元PDU(Protocol Data Unit)彼此交换信息。不同层的PDU中包含有不同的信息,因此PDU在不同层被赋予了不同的名称。如上层数据在传输层添加TCP报头后得到的PDU被称为Segment(数据段 );数据段被传递给网络层,网络层添加IP报头得到的PDU被称为Packet(数据包);数据包被传递到数据链路层,封装数据链路层报头得到的PDU被称为Frame(数据帧);最后,帧被转换为比特,通过网络介质传输。这种协议栈逐层向下传递数据,并添加报头和报尾的过程称为封装。关注我,为你开拓更多知识点! 私信留言“知识”在线答疑哦! 数据包在以太网物理介质上传播之前必须封装头部和尾部信息。封装后的数据包称为称为数据帧,数据帧中封装的信息决定了数据如何传输。以太网上传输的数据帧有两种格式,选择哪种格式由TCP/IP协议簇中的网络层决定。以太网上使用两种标准帧格式。第一种是上世纪80年代初提出的DIX v2格式,即Ethernet II帧格式。Ethernet II后来被IEEE 802标准接纳,并写进了IEEE 802.3x-1997的3.2.6节。第二种是1983年提出的IEEE 802.3格式。这两种格式的主要区别在于,Ethernet II格式中包含一个Type字段,标识以太帧处理完成之后将被发送到哪个上层协议进行处理。IEEE802.3格式中,同样的位置是长度字段。关注我,为你开拓更多知识点! 私信留言“知识”在线答疑哦!不同的Type字段值可以用来区别这两种帧的类型,当Type字段值小于等于1500(或者十六进制的0x05DC)时,帧使用的是IEEE 802.3格式。当Type字段值大于等于1536 (或者十六进制的0x0600)时,帧使用的是Ethernet II格式。以太网中大多数的数据帧使用的是Ethernet II格式。以太帧中还包括源和目的MAC地址,分别代表发送者的MAC和接收者的MAC,此外还有帧校验序列字段,用于检验传输过程中帧的完整性。 以太网在二层链路上通过MAC地址来唯一标识网络设备,并且实现局域网上网络设备之间的通信。MAC地址也叫物理地址,大多数网卡厂商把MAC地址烧入了网卡的ROM中。发送端使用接收端的MAC地址作为目的地址。以太帧封装完成后会通过物理层转换成比特流在物理介质上传输。以太网帧说明以太网帧大小必须在64~1518字节(不包含前导码和定界符),即包括目的地址(6B)、源地址(6B)、类型(2B)、数据、FCS(4B)在内,其中数据段大小在46~1500字节之间。以太网帧结构以太网由前导码(7B)、定界符(1B)、目的地址(6B)、源地址(6B)、类型(2B)、数据、FCS(4B)。关注我,为你开拓更多知识点! 私信留言“知识”在线答疑哦!字段字段长度(字节)说明前导码(preamble)70和1交替变换的码流帧开始符(SFD)1帧起始符目的地址(DA)6目的设备的MAC物理地址源地址(SA)6发送设备的MAC物理地址长度/类型(Length/Type)2帧数据字段长度/帧协议类型数据及填充(data and pad)46~1500帧数据字段帧校验序列(FCS)4数据校验字段前导码(preamble):交替的0和1,设备从静默状态变成有信号状态标志以太网帧的开始。IEEE802.3 由 7 个 8‘b10101010 (8’haa)构成,由于数据从低比特开始传送(LSB),代码中的前导码数值为 8’b01010101,即8‘h55。帧开始符(SFD, Start frame delimiter):值为8’b10101011(8’hab),最后两个1表示接收端适配器:“帧信息来了,准备接收”。数据从低比特开始传送(LSB),因此代码中的 SFD 值为8’hd5。目的地址(DA, Destination Address):包含一个 48bit 的值,LSB 优先。目标地址可以是单播地址、广播地址(48‘hffff_ffff_ffff)、组播地址。当网卡收到一个数据帧时,首先检查该帧的目的地址是否与当前适配器的物理地址相同,如果相同,则进一步处理,如果不同则直接丢弃。源地址(SA, Source Address):一个 48bit 的值,发送帧的网络适配器的物理地址,用于标识传输设备,LSB 格式。长度/类型(Length/Type):字段值小于或等于1500,则指示帧的有效数据长度。Length 标识有效载荷的数据长度,不包含填充的长度。16‘h0800 代表IP 报文;16‘h0806 标识 ARP 请求/应答报文;16’h8035 标识RARP请求/应答报文。数据及填充(data and pading):该段数据长度需在46~1500字节之间,填充数据不会改变Length 的值。帧校验序列(FCS):用于存储 CRC 结果的校验结果。以 preamble、SFD、DA、SA、Length/Type、DATA and Pading作为输入数据进行计算,从"目标MAC地址"字段到"数据"字段的数据进行校验。发布于 2021-01-19 14:03以太网(Ethernet)网络工程师知识​赞同 27​​7 条评论​分享​喜欢​收藏​申请

以太网网络协议Ethernet II 帧分析-CSDN博客

>

以太网网络协议Ethernet II 帧分析-CSDN博客

以太网网络协议Ethernet II 帧分析

最新推荐文章于 2023-03-28 00:21:37 发布

庚庚911

最新推荐文章于 2023-03-28 00:21:37 发布

阅读量2.7w

收藏

158

点赞数

32

分类专栏:

网络

文章标签:

Ethernet II 帧

原文链接:https://note.t4x.org/basic/network-ethernet-protocol-ii/

版权

网络

专栏收录该内容

9 篇文章

3 订阅

订阅专栏

目前主要有两种格式的以太网帧:Ethernet II(DIX 2.0)和IEEE 802.3。

IP、ARP、EAP和QICQ协议使用Ethernet II帧结构,而STP协议则使用IEEE 802.3帧结构。

Ethernet II是由Xerox与DEC、Intel(DIX)在1982年制定的以太网标准帧格式,后来被定义在RFC894中。

IEEE 802.3是IEEE 802委员会在1985年公布的以太网标准封装结构(可以看出二者时间相差不多,竞争激烈),RFC1042规定了该标准(但终究二者都写进了IAB管理的RFC文档中)。

下图分别给出了Ethernet II和IEEE 802.3的帧格式:

⑴ 前导码(Preamble):由0、1间隔代码组成,用来通知目标站作好接收准备。以太网帧则使用8个字节的0、1间隔代码作为起始符。IEEE 802.3帧的前导码占用前7个字节,第8个字节是两个连续的代码1,名称为帧首定界符(SOF),表示一帧实际开始。 ⑵ 目标地址和源地址(Destination Address & Source Address):表示发送和接收帧的工作站的地址,各占据6个字节。其中,目标地址可以是单址,也可以是多点传送或广播地址。 ⑶ 类型(Type)或长度(Length):这两个字节在Ethernet II帧中表示类型(Type),指定接收数据的高层协议类型。而在IEEE 802.3帧中表示长度(Length),说明后面数据段的长度。 ⑷ 数据(Data):在经过物理层和逻辑链路层的处理之后,包含在帧中的数据将被传递给在类型段中指定的高层协议。该数据段的长度最小应当不低于46个字节,最大应不超过1500字节。如果数据段长度过小,那么将会在数据段后自动填充(Trailer)字符。相反,如果数据段长度过大,那么将会把数据段分段后传输。在IEEE 802.3帧中该部分还包含802.2的头部信息。 ⑸ 帧校验序列(FSC):包含长度为4个字节的循环冗余校验值(CRC),由发送设备计算产生,在接收方被重新计算以确定帧在传送过程中是否被损坏。

分析:

1:红色目标地址帧 6 字节; 2:蓝色源地址帧 6 字节; 3:粉色类型 2 字节;

为什么没有“前导码”和“帧校验序列”,参见 https://blog.csdn.net/yetugeng/article/details/100514693 。

1:版本号 4 bit 2:头长度 4 bit 3:服务类型 8 bit 4:总长度 16 bit 5:标识 16 bit 6:标志 4 bit 7:片移量 12 bit 8:生存时间 8 bit 9:上层协议标识 8 bit 10:头部校验和 16 bit 11:源地址 bit 12:目标地址 32 bit 共计:20字节

优惠劵

庚庚911

关注

关注

32

点赞

158

收藏

觉得还不错?

一键收藏

知道了

4

评论

以太网网络协议Ethernet II 帧分析

目前主要有两种格式的以太网帧:Ethernet II(DIX 2.0)和IEEE 802.3。IP、ARP、EAP和QICQ协议使用Ethernet II帧结构,而STP协议则使用IEEE 802.3帧结构。Ethernet II是由Xerox与DEC、Intel(DIX)在1982年制定的以太网标准帧格式,后来被定义在RFC894中。IEEE 802.3是IEEE 802委员会在19...

复制链接

扫一扫

专栏目录

Ethernet II以太网帧详细分析

01-06

通过抓包 的 Ethernet II以太网帧详细分析,非常精细

四种以太网数据包详解

xiao628945的专栏

09-21

5134

1 Ethernet II

1.1 Ethernet II协议简介

  以太网是当今现有局域网采用的最通用的通信协议标准。该标准定义了在局域网中采用的电缆类型和信号处理方法。EthernetII由DEC,Intel和Xerox在1982年公布其标准,Etherent II主要更改了EthernetI的电气特性和物理接口,在帧格式上并无变化。Etherent II采用CSMA/CD的媒体接入

4 条评论

您还未登录,请先

登录

后发表或查看评论

网络协议学习之Ethernet II协议(二层)

weixin_43580872的博客

07-23

1万+

网络协议学习之Ethernet II协议简介一、协议1、协议结构2、二、抓包分析总结

简介

    Ethernet II协议位于五层OSI模型中的第二层,属于链路层的协议。

一、协议

1、协议结构

前导包

目的mac地址(DMac)

源mac地址 (SMac)

类型(Type)

数据(Playload)

校验(CRC)

6 Byte 目的地址

6 Byte 源地址

2 Byte

46 ~ 1500 Byte

2、

二、抓包分析

总结

..

以太网的帧结构

繁星流动天际

03-24

5371

以太网的帧结构分两种:

第一种是Ethernet_II的帧结构,如下图所示:

DMAC:指(destination mac)目的地址,即是接收信息设备的物理地址。

SMAC:指(source MAC)源地址,即是发送信息设备的物理地址。

Type:用来标识data字段中包含的高层协议,即是通告接收信息的设备如何解释该数据字段(数据的封装

都是从应用层到低层逐渐添加的,在数据链路层以上的数据都...

【转】以太网的帧

圣菲尔丁

07-17

577

特别说明:本文内容整理自网络,参考资料见文尾。

一、Ethernet帧格式的发展

二、几种以太网帧简介

2.1 Ethernet I

2.2 Ethernet II(ARPA)

2.3 RAW 802.3

2.4 802.3/802.2 LLC

2.5 802.3/802.2 SNAP

三、以太网帧报头结构及解码

3.1 Ethernet II

3.1.1 Ethern

初识Ethernet II帧格式

m0_51381079的博客

09-27

5273

以太帧有很多种类型。不同类型的帧具有不同的格式和 MTU 值。但在同种物理媒体上都可同时存在。常见的有三种帧格式:Ethernet II 帧是最常见的帧类型,并通常直接被 IP 协议使用;非标准 IEEE 802.3 帧变种;IEEE 802.3帧(后跟逻辑链路控制(LLC) 帧)。本文仅谈对Ethernet II 帧的初步认知。

Ethernet II 类型以太网帧的最小长度为 64 字节(6+6+2+46+4),最大长度为 1518 字节(6+6+2+1500+4)。其...

Ethernet II

qq_45741246的博客

03-28

617

以太网两种标准帧格式之一一种是Ethernet II另一种是 IEEE802.3当Type字段大于等于1536或0x0600时为Ethernet II帧格式当Type字段小于等于1500或0x05DC时为IEEE802.3。

学习笔记之以太网帧结构

weixin_50281314的博客

11-12

1622

以太网两种帧结构简介

关于以太网(Ethernet II)这个网络的个人理解以及应用(2)

热门推荐

@角色扮演#

09-26

1万+

在stm32f107环境下实现如下功能:

- 以太网接口用作串口使用(区别于C/S模型);

- 以太网接口接收全部的网内数据;

- 对网内数据包过滤,仅接收本机相关数据包及广播包; 工具:anysend.exe:Anysend是基于Winpcap驱动开发的,实现以太网接口发送任意自组数据包的工具,各位请自行查找下载;

wireshark.exe:网络抓包工具

如果你是一个嵌入式开发人员,

以太网基础

weixin_34344677的博客

12-29

544

http://zh.wikipedia.org/wiki/IEEE_802

IEEE 802 

指IEEE标准中关于局域网和城域网的一系列标准。更确切的说,IEEE 802标准仅限定在传输可变大小数据包的网络。

其中最广泛使用的有以太网、令牌环、无线局域网等。这一系列标准中的每一个子标准都由委员会中的一个专门工作组负责。

IEEE 802中定义的服务和协议限定在OSI模型[OSI网络参考模...

网络协议TCP/IP实验一 以太网链路层帧格式分析实验

01-09

湘潭大学网络协议TCP/IP实验一, 以太网链路层帧格式分析实验报告,仅供参考

以太网帧协议

10-11

以太网帧协议的解析程序,有利于读者对以太网帧的进行学习和解析

计算机网络实验 分析Ethernet II帧.rar

03-03

计算机网络实验 分析Ethernet II帧.rar

网络协议分析器,以太网帧分析

04-16

网络协议分析器,网络课程设计资料,MAC帧头、IP\TCP\ARP\UDP以及数据部分分析

android 以太网 添加设置Ethernet

11-27

android在设置中添加以太网ethernet方法, 在可以是学习框架的一种好方法。

AO4480&10-VB一款N-Channel沟道SOP8的MOSFET晶体管参数介绍与应用说明

最新发布

03-13

SOP8;N—Channel沟道,40V;10A;RDS(ON)=14mΩ@VGS=10V,VGS=20V;Vth=1.6V;

东北林业大学906农村发展理论与实践2021年考研专业课初试大纲.pdf

03-13

东北林业大学考研初试大纲

东北林业大学《生物质复合材料学》2020考研专业课复试大纲.pdf

03-13

东北林业大学考研复试大纲

使用Kotlin脚本实现gradle-java项目Demo源码

03-13

使用Kotlin脚本实现gradle-java项目,gradle可以使用goovy和kotlin两种语言实现,此Demo主要是用kotlin脚本实现的gradle项目管理,熟悉kotlin脚本的编写,实现可编程的脚本控制,内附一简单测试代码。

计算机实验以太网桢分析,计算机网络实验2 分析 Ethernet帧.

05-30

好的,我会尽力回答你的问题。Ethernet帧是一种在以太网中传输数据的格式,由多个字段组成。下面是常见的字段:

1. 前导码:用于同步各个设备的时钟。

2. 目的MAC地址:指定数据包应该传输到哪个设备。

3. 源MAC地址:指定数据包是由哪个设备发送的。

4. 类型/长度字段:表示数据包的类型或长度。

5. 数据字段:包含实际的数据。

6. 校验和:用于检测数据包是否损坏。

在实验中,可以使用网络分析工具(如Wireshark)来捕获并分析Ethernet帧。通过分析目的MAC地址和源MAC地址,可以确定数据包的来源和目的地。可以通过查看类型/长度字段来确定数据包的类型,例如IP数据包或ARP数据包。此外,还可以检查校验和字段以检测数据包是否损坏。

希望这些信息能够对你有所帮助。如果你还有其他问题,请继续提问。

“相关推荐”对你有帮助么?

非常没帮助

没帮助

一般

有帮助

非常有帮助

提交

庚庚911

CSDN认证博客专家

CSDN认证企业博客

码龄14年

暂无认证

73

原创

3万+

周排名

122万+

总排名

68万+

访问

等级

6897

积分

163

粉丝

373

获赞

44

评论

2037

收藏

私信

关注

热门文章

正则表达式的替换技巧

42312

以太网网络协议Ethernet II 帧分析

27336

DHCP 协议详解

21066

证书关于 pem der cer crt csr pfx 的区别

19097

CentOS6下搭建Extmail邮箱服务

18653

分类专栏

k8s

1篇

iptables

15篇

Spring

2篇

VUE

1篇

wireshark

4篇

嵌入式

1篇

实用工具

1篇

计算机基础

1篇

HTML

IntelliJ IDEA

1篇

maven

1篇

JavaScript

1篇

研发管理

eclipse

2篇

Jenkins

杂文

vmware

2篇

nginx

2篇

网络

9篇

博客

1篇

python

30篇

linux

38篇

shell

8篇

C

17篇

mysql

10篇

java

20篇

硬件

6篇

站点

14篇

监控

11篇

Prometheus

1篇

anisible

3篇

glassfish

3篇

activemq

3篇

协议

20篇

技术分享

7篇

邮件

22篇

windows

12篇

运维

5篇

前端

1篇

工具手册

5篇

reids

2篇

文档资料

1篇

httpd

1篇

最新评论

read()函数的困惑

灰尘驾车:

我其实很好奇为什么6个数字会读到8个字符,我自己试验的时候,第一行有5个字符,我需要把cnt设置为8才能读到第二行的第一个字符,也就是说多读了两个字符才能把这行换掉

DHCP 协议详解

2301_77588844:

表-2:协议结构 (DHCP报文格式) ---这个错了

Windows wmic命令之process进程管理

victor_fj:

博主你好 我这边只要使用where 就报错什么情况?

以太网网络协议Ethernet II 帧分析

Adamant245:

博主您好,我想问一下Data是哪一部分呢?是下面的第二幅图在分析的内容吗?谢谢!

cwRsync-windows下的rsync工具

qq_45816643:

请问安装包可以分享吗

您愿意向朋友推荐“博客详情页”吗?

强烈不推荐

不推荐

一般般

推荐

强烈推荐

提交

最新文章

Docker与k8s的恩怨情仇 系列

iptables详解(14):iptables小结之常用套路

iptables详解(13):iptables动作总结之二

2021年18篇

2020年32篇

2019年124篇

2018年87篇

目录

目录

分类专栏

k8s

1篇

iptables

15篇

Spring

2篇

VUE

1篇

wireshark

4篇

嵌入式

1篇

实用工具

1篇

计算机基础

1篇

HTML

IntelliJ IDEA

1篇

maven

1篇

JavaScript

1篇

研发管理

eclipse

2篇

Jenkins

杂文

vmware

2篇

nginx

2篇

网络

9篇

博客

1篇

python

30篇

linux

38篇

shell

8篇

C

17篇

mysql

10篇

java

20篇

硬件

6篇

站点

14篇

监控

11篇

Prometheus

1篇

anisible

3篇

glassfish

3篇

activemq

3篇

协议

20篇

技术分享

7篇

邮件

22篇

windows

12篇

运维

5篇

前端

1篇

工具手册

5篇

reids

2篇

文档资料

1篇

httpd

1篇

目录

评论 4

被折叠的  条评论

为什么被折叠?

到【灌水乐园】发言

查看更多评论

添加红包

祝福语

请填写红包祝福语或标题

红包数量

红包个数最小为10个

红包总金额

红包金额最低5元

余额支付

当前余额3.43元

前往充值 >

需支付:10.00元

取消

确定

下一步

知道了

成就一亿技术人!

领取后你会自动成为博主和红包主的粉丝

规则

hope_wisdom 发出的红包

实付元

使用余额支付

点击重新获取

扫码支付

钱包余额

0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。 2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值

Ethernet(以太网)基本工作原理 - 知乎

Ethernet(以太网)基本工作原理 - 知乎切换模式写文章登录/注册Ethernet(以太网)基本工作原理乐竹每天提醒自己,不要忘记梦想!以太网采用的介质控制方法是:CSMA/CD(带有冲突检测的载波侦听多路访问)Ethernet 数据发送流程CMSA/CD的发送流程可以简单概况为4步:先听后发、边听边发、冲突停止、延迟重发。(1)载波侦听过程每个主机在发送数据帧之前,首先要侦听总线的【忙/闲】状态。Ethernet网卡的收发器一直在接收总线上的信号,如果总线上有其他主机发送的信号,那么曼彻斯特解码器的解码时钟一直有输出;如果总线上没有信号发送,那么曼彻斯特(Manchester)解码器的时钟输出为0。Manchester解码器是网卡上的一个组件,解码时钟会根据线路上的信号以曼彻斯特编码解码。曼彻斯特编码因此,Manchester解码器的时钟信号可以反映出总线的【忙/闲】状态。(2)冲突检测方法载波侦听并不能完全消除冲突。———————————————————————————————————————电磁波在同轴电缆中传播速度约为 2×108m/s,如果局域网中两个【相隔最远】主机A和B相距 1000m,那主机A向主机B发送一帧数据要经过。t=\frac{1000}{2\times10^{8}}=5\times10^{-6} s=5\mu s 主机A发送数据后,要经过t后,主机B才接收到这个数据帧。在这5μs的时间内,主机B不知道主机A已经发送数据,它就有可能也向主机A发送数据。出现这种情况,主机A和主机B的这次发送就发生【冲突】。———————————————————————————————————————比较极端的冲突是:主机A向主机B发送数据,当数据信号快要到达主机B时,主机B也发送了数据。等到冲突信号传送回主机A时,已经经过了两倍的传播延迟2t(t=D/V,D为总线传输介质的最大长度,V是电磁波在介质中的传播速度)。冲突的数据帧可以传遍整个缆段,缆段上的主机都可以检测到冲突。缆段被称为【冲突域】,如果超过2t的时间没有检测出冲突,则该主机已取得【总线访问权】,因此将 2t定义为【冲突窗口】。冲突窗口是连接在一个缆段上所有主机能检测到冲突发生的最短时间。由于Ethernet物理层协议规定了总线最大长度,电磁波在介质中的传播速度是确定的,因此冲突窗口的大小也是确定的。最小帧长度与总线长度、发送速率之间的关系———————————————————————————————————————为了保证主机在发送一帧的过程可以检测到冲突,就要求发送一个最短帧的时间要超过冲突窗口的时间。因为帧发送并不是一瞬间全部发送完成,发送延迟 t = 帧长度/发送速率,发送速率一般不会改变,因此要在发送的过程中能检测到冲突需要规定一个最小帧长度最短帧长度为 L_{min} ,主机发送速率为S,发送短帧所需的时间为 L_{min} / S ,冲突窗口的值为2D/V \frac{L_{min}}{S}\geq \frac{2D}{V} 所以可以根据总线长度、发送速率和电磁波传播速度估计最小帧长度。———————————————————————————————————————冲突是指总线上同时出现两个或两个以上的发送信号,它们叠加后的信号波形不等于任何一个主机输出的信号波形。冲突检测有两种方法:比较法 和 编码违例判决法。比较法:主机在发送帧的同时,将其发送信号波形与总线上接收到的信号波形进行比较(信号在总线上是双向传播的,比如主机A、B、C,B发送信号A与C都能接收到)。如果两个信号波形不一致,说明冲突发生。 编码违例判决法:检查从总线上接收的信号波形是否符合曼彻斯特编码规律,不符合则说明发生冲突。64B是Ethernet的最小帧长度:如果一个主机发送一个最小帧,或者一个帧的前64个字节没有检测到冲突,说明该主机已经取得总线发送权,冲突窗口期又称为争用期。发现冲突、停止发送如果主机在发送过程中检测到冲突,主机要进入停止发送,随机延迟后重发的流程。随机延迟重发的第一步是:发送冲突加强干扰序列,保证有足够的冲突持续时间,使局域网中的所有主机都能检测出冲突存在,并立即丢弃冲突帧,减少由于冲突浪费的时间,提高信道利用率。冲突加强干扰序列信号长度为32bit随机延迟重发Ethernet规定一个帧的最大重发次数为16。后退延迟算法是:截止二进制指数后退延迟———————————————————————————————————————算法可表示为: \tau =2 \cdot R \cdot a τ:重新发送所需的后退延迟时间。a:冲突窗口的值。R:随机数,以主机地址为初始值生成随机数R。k:k=min(n,10),如果重发次数n小于10,则k=n,n≥10,则k=10.———————————————————————————————————————后退延迟时间τ到达后,节点将查询判断总线忙、闲状态,重新发送,如果再次遇到冲突,则重发次数+1,如果重发次数超过16时,表示发送失败,放弃发送该帧。CSMA/CD方法被定义为一种随机争用型介质控制访问方法。Ethernet帧结构Ethernet V2.0标准 和 IEEE 802.3标准的Ethernet帧结构的区别。———————————————————————————————————————Ethernet V2.0是在DEC、Intel(英特尔)、Xeror公司合作研究的,所以也称Ethernet V2.0帧结构为DIX帧结构(公司首字母)IEEE802.3标准对Ethernet帧结构也做出了规定,通常称之为 802.3帧———————————————————————————————————————(1)前导码 1. DIX帧的前8B是前导码,每个字节都是10101010。接收电路通过提取曼彻斯特编码的自含时钟,实现收发双方的比特同步。 说人话就是:编码时故意搞个特别的码在前面,通过长度告知解码器后面有货送来,注意接收。 通过前导码就可判断信号是有用信号还是干扰信号,否则忽略不解码。 2. 802.3帧的前导码,每个字节都是10101010。但是有一个10101011的帧前定界符。前56位(7B×8)前导码是为了保证在接收【目的地址】时,已经进入【稳定接收状态(识别出这个是有用信号)】在62位1010…1010比特序列后出现两个11,两个11后就是Ethernet帧的目的地址字段。 3. 前导码只是为了实现收发双方的比特同步与帧同步,在接收后不需要保留,也不计入帧头长度。(2)类型字段和长度字段 1. DIX帧的类型字段表示网络层使用的协议类型。——————————————————————————————————————— 例如:类型字段=0x0800表示网络层使用IPv4协议、类型字段=0x86DD表示网络层使用IPv6协议。——————————————————————————————————————— 2. Ethernet帧最小长度为64B,除去帧头(目的地址+源地址+源地址),数据字段最短为46B。数据字段最长为1500B,因此数据字段长度在46~1500B之间。 3. DIX帧没有长度字段,所以接收端等待物理线路上没有电平的跳变(帧发送结束),除去4B的校验字段,就能取出数据字段。(3)目的地址和源地址字段 1. 目的地址和源地址表示帧的接收节点和发送节点的硬件地址。 2. 硬件地址也叫物理地址、MAC地址、Ethernet地址。 3. 源地址必须是6B的MAC地址。 4. 目的地址可以是单播地址(发送给单一主机)、多播地址(发送给一部分主机)、广播地址(发送给所有主机)。(4)帧校验字段 1. 帧校验字段FCS( Frame Check Sequence)采用32位的CRC校验。 2. CRC校验范围:目的地址、源地址、长度、LLC(Logical Link Control:逻辑链路控制)数据等字段。Ethernet接收流程分析主机主要不发送数据帧就处于接收状态。帧目的地址检查: 1. 目的地址是单一主机的物理地址,并且是本主机地址—>接收。 2. 目的地址是组地址,并且本主机属于该组—>接收。 3. 目的地址是广播地址—>接收。 4. 如果以上3种目的地址都与本主机地址不匹配,丢弃该接收帧。帧接收: 1. CRC校验正确。 2. 帧长度正确。 3. 如果1、2都正确,将帧中的数据发送到网络层,否则报告”接收失败“进入帧结束状态。帧校验: 1. CRC校验正确,但是帧长度不对,则报告“帧长度错”。 2. 如果校验出错,判断接收帧是不是8bit的整数倍(字段长度的单位是字节,1B=8bit,接收帧长度正常的话肯定是8bit的整数倍)☆ 如果不是8bit的整数倍,则报告“帧比特出错”。☆ 如果没有发现比特丢失或者比特位对位错,则报告“帧校验错”。 3. 进入结束状态。帧间最小间隔 1. 为保证网卡能正确、连续的处理接收帧,要规定一个帧间最小间隔 (网卡处理接收帧要时间、虽然很短) 2. 规定Ethernet帧的最小间隔为9.6μsEthernet网卡网卡由三部分组成:网卡与传输介质的接口(RJ45)、Ethernet数据链路控制器、网卡与主机的接口(主板的I/O扩展槽)。Ethernet数据链路控制器的功能:实现发送数据编码、接收数据解码、CRC产生与校验、曼彻斯特编码与解码、CSMA/CD介质访问控制。网卡的物理地址写入网卡的只读存储器中,不会与世界上任何一台其他的计算机重复。编辑于 2022-08-10 18:41Ethernet以太网(Ethernet)工作原理​赞同 19​​4 条评论​分享​喜欢​收藏​申请

Ethernet帧结构-CSDN博客

>

Ethernet帧结构-CSDN博客

Ethernet帧结构

最新推荐文章于 2024-03-10 17:51:01 发布

weixin_34119545

最新推荐文章于 2024-03-10 17:51:01 发布

阅读量634

收藏

2

点赞数

文章标签:

网络

原文链接:http://www.cnblogs.com/TerryLiang/archive/2009/05/02/1447817.html

版权

TCP/IP支持多种不同的链路层协议,这取决于网络所使用的硬件,如Ethernet,令牌环网,FDDI(Fiber Distributed Data Interface,光纤分布式数据接口)等。基于不同的硬件的网络使用不同形式的帧结构,Ethernet是当今应用最广泛的局域网技术。

Ethernet V2.0的帧结构:

前导码帧前定界符目的地址DA源地址SA类型字段数据字段帧校验字段7B1B6B6B2B46~1500B4B

1.前导码和帧前定界符字段 前导码由56位(7B)的101010...1010比特序列组成,帧前定界符由一个8位的字节组成,其比特序列为10101011。 如果将前导码与帧前定界符一起看,那么在62位101010...1010比特序列之后出现11。在这个11之后便是Ethernet帧的目的地址字段。从Ethernet物理层角度看,接收电路从开始接收比特到进入稳定状态,需要一定的时间。设计前62位1和0的交替比特序列的目的是保证接收电路在帧的目的地址到来之前到达正常状态。接收端在收到最后两位11时,标志在他之后应该是帧的目的地址。前导码与帧前定界符主要起到接收同步的作用,这8个字节接收后不需要保留,也不计入帧头长度。 2.目的地址和源地址 目的地址与源地址分别表示帧的接收节点与发送节点的硬件地址。硬件地址一般称作MAC地址,物理地址或Ethernet地址。地址长度为6B(即48位)。为了方便起见,通常使用十六进制数字书写。 Ethernet帧的目的地址可分为3种: 单播地址(unicast address):目的地址的第一位为0表示单播地址。目的地址是单播地址,则表示该帧只被与目的地址相同的节点所接收。 多播地址(multicast address):目的地址第一位为1表示多播地址。目的地址是多播地址,则表示该帧被一组节点所接收。 广播地址(broadcast address):目的地址全为1表示广播地址。目的地址是广播地址,则表示该帧被所有所有节点接收。 3.类型字段 类型字段表示的是网络层使用的协议类型。常见的协议类型:0800表示网络层使用IP协议,0806表示网络层使用ARP协议,8137表示网络层使用Novell IPX协议,809b表示网络层使用Apple Talk协议。 4.数据字段 IEEE 802.3协议规定数据的长度在46~1500B之间。如果数据的长度少于46B,需要加填充字节,补充到46B。填充字节是任意的,不计入长度字段中。帧头部分长度为18B,包括6B的目的地址字段,6B的源地址字段,2B的类型字段和4B的帧校验和字段,而前导码与帧前界定符不计入帧头长度中,那么,Ehternet帧的最小长度为64B(46B+18B),最大长度为1518B(1500B+18B)。设置最小帧长度的一个目的是使每个接收节点能够有足够的时间检测到冲突。 5.帧校验字段 帧校验字段FCS采用CRC校验。校验的范围包括目的地址字段,源地址字段,类型字段,数据字段。在接收端进行校验,如果发生错误,帧将被丢弃。 32位CRC校验的生成多项式为: G(x)=x32+x26+x23+x22+x16+x12+x11+x10+x8+x7+x5+x4+x2+x1+1

转载于:https://www.cnblogs.com/TerryLiang/archive/2009/05/02/1447817.html

优惠劵

weixin_34119545

关注

关注

0

点赞

2

收藏

觉得还不错?

一键收藏

知道了

0

评论

Ethernet帧结构

TCP/IP支持多种不同的链路层协议,这取决于网络所使用的硬件,如Ethernet,令牌环网,FDDI(Fiber Distributed Data Interface,光纤分布式数据接口)等。基于不同的硬件的网络使用不同形式的帧结构,Ethernet是当今应用最广泛的局域网技术。Ethernet V2.0的帧结构: 前导码 帧前定界符...

复制链接

扫一扫

Ethernet帧结构解析程序

04-21

提供Ethernet V2.0格式的Ethernet帧封包文件input(存放在“Exe”目录下),该封包文件是二进制文件,文件中包含若干个Ethernet帧,其中有正确的帧,也有错误的帧。正常Ethernet帧的数据字段封装的是上层数据报,而本光盘提供的Ethernet帧封包文件中,数据字段封装的是文本信息

TCP/IP协议专栏——以太网帧中的前导码和帧间隙-带宽计算 详解——网络入门和工程维护必看

weixin_44081384的博客

09-06

3444

如果PIC卡实际收到的帧间隙、前导码、帧开始界定符,如果跟协议规定的不一样,是不

是这个数据帧也会被丢弃?答案是,PIC卡在处理帧间隙时,帧间隙一般可以容忍跟协议规定的

不一样(比如不是全1);但前导码、帧开始界定符必须符合协议规定的值,否则当做帧间隙处

理,也就是帧被丢弃了。

参与评论

您还未登录,请先

登录

后发表或查看评论

Ethernet数据帧结构

weixin_42555551的博客

04-19

1225

Ethernet数据帧长度在64字节 - 1518字节,校验码采用32位CRC校验

| 前导码 7B | 帧前定界符 1B | 目的MAC 6B | 源MAC 6B | 类型字段2B | 数据字段 46B - 1500B | 校验字段 4B |

前导码AA AA AA AA AA AA AA 帧前定界符 AB,前导码和帧前定界符不计入数据帧长度

类型字段:标识网络层所使用的协议,

...

Ethernet_II帧和802.3_Ethernet帧格式比较

热门推荐

bluelingt的博客

10-08

4万+

一、Ethernet帧格式的发展 

1980 DEC,Intel,Xerox制订了Ethernet I的标准 

1982 DEC,Intel,Xerox又制订了Ehternet II的标准 

1982 IEEE开始研究Ethernet的国际标准802.3 

1983 迫不及待的Novell基于IEEE的802.3的原始版开发了专用的Ethernet帧格式 

1985 IEEE推出IE

EtherNet/IP 协议结构

weixin_33858336的博客

03-05

1万+

一、Ethernet/IP 协议

将标准的TCP/IP以太网延伸 到工业实时控制并和通用工业协议(CIP)结合,将很好地帮助用户获得更加开放集成的工业自动化和信息化的整体解决方案。EtherNet/IP 就是为实现这一目的的标准工业以太网技术。Ethernet/IP是一个面向工业自动化应用的工业应用层协议。它建立在标准是由ODVA(OpenDeviceNet VendorsAssoci...

网络编程 Ethernet帧结构解析

07-16

网络编程 Ethernet帧结构解析,为了达到比特同步,在传输媒体上实际传送的要比 MAC 帧还多 8 个字节 在帧的前面插入的 8 字节中的第一个字段共 7 个字节,是前同步码,用来迅速实现 MAC 帧的比特同步。第二个字段是帧...

Ethernet 帧结构解析程序

11-09

Ethernet 帧结构解析程序,用C++的

Ethernet的帧格式

01-04

1980 DEC,Intel,Xerox制订了Ethernet I的标准 1982 DEC,Intel,Xerox又制订了Ehternet II的标准 1982 IEEE开始研究Ethernet的国际标准802....后来为解决EthernetII与802.3帧格式的兼容问题推出折衷的Ethernet SNAP格式

以太网帧结构详解

曌赟的博客

07-15

3万+

以太网帧结构详解前言分层模型- OSI分层模型– TCP/IP数据封装终端之间的通信帧格式Ethernet_II 帧格式IEEE802.3 帧格式数据帧传输以太网的MAC地址数据帧的发送和接收单播广播组播发送与接收

前言

20世纪60年代以来,计算机网络得到了飞速发展。各大厂商和标准组织为了在数据通信网络领域占据主导地位,纷纷推出了各自的网络架构体系和标准,如IBM公司的SNA协议,Novell公...

Ethernet帧的解析

12-12

1.按Ethernet V2.0格式封装Ethernet帧,源地址来自本机MAC地址,目的地址为随意编写的有效MAC地址,类型字段为IP协议对应值,数据字段来自文本文件(见附件),帧校验字段采用8位CRC校验。

2.输出每个帧的各字段内容,数据字段采用字符串输出,其他字段为十六进制输出。

3.命令行程序(85分封顶)或图形化程序(100分封顶)。

解析以太网V2MAC帧的格式

我真的太想进步了~tx

06-08

1万+

(1) 前导码和帧前定界符        在帧中设置前导码和帧前定界符,以便于帧的识别。前导码由56位(7Byte)的10101010…1010比特序列组成,每个字节都是16进制0xAA。从Ethernet物理层电路设计的角度,接受Manchester编码信号的电路是锁相技术,锁相电路从开始接收到进入稳定状态的时间大约为12b。设置前导码与帧前定界符的目的是保证接收电路在目的地址字段到达前进入稳定...

计算机网络实验二 Wireshark实验

jtongr的博客

01-07

9865

Wireshark 实验

本部分按照数据链路层、网络层、传输层以及应用层进行分类,共有 10 个实验。需要使用协议分析软件Wireshark进行,请根据简介部分自行下载安装。

准备

请自行查找或使用如下参考资料,了解Wireshark的基本使用:

选择对哪块网卡进行数据包捕获

开始/停止捕获

了解Wireshark主要窗口区域

设置数据包的过滤

跟踪数据流

???? 参考

Wireshark官方文档

Wireshark抓包新手使用教程

Troubleshooting with W...

把Ethernet(以太网)基本工作原理说清楚

m0_52733659的博客

11-19

6813

文章目录Ethernet 数据发送流程(1)载波侦听过程(2)冲突检测方法发现冲突、停止发送随机延迟重发Ethernet帧结构Ethernet V2.0标准 和 IEEE 802.3标准的Ethernet帧结构的区别前导码类型字段和长度字段Ethernet帧结构分析目的地址和源地址字段帧校验字段Ethernet接收流程分析Ethernet网卡

“以太”来源于19世纪物理学家解释光在空间中传播的介质:“以太”

以太网采用的介质控制方法是:CSMA/CD(带有冲突检测的载波侦听多路访问)

Etherne

帧的来源和目的地址

流风回雪的博客

05-07

5618

因为无线网络中没有采用有线电缆而是采用无线电波做为传输介质,所以需要将其网络层以下的帧格式封装的更复杂,才能像在有线网络那样传输数据。其中,仅从标识帧的来源和去向方面,无线网络中的帧就需要有四个地址,而不像以太网那样简单只有有两个地址(源和目的)。这四个地址分别是:        SRC:源地址(SA),和以太网中的一样,就是发帧的最初地址,在以太网和wifi中帧格式转换的时候,互相可以直接复制。...

ETHERNET帧结构

weixin_34038652的博客

06-02

269

以太网帧  http://blog.csdn.net/guoshaobei/article/details/4768514

Ethernet的帧格式 (转)  http://jiangqiaosun.blog.163.com/blog/static/260981820101022114138277/ 

数据链路层 http://rabbit.xttc.edu.cn/rabbit/htm/art...

Ethernet II 帧格式介绍及示例

weixin_34375251的博客

10-08

3705

1.以太网

以太网这个术语一般是指数字设备公司( Digital Equipment Corp.) 、英特尔公司(I n t e l C o r p .)和X e r o x公司在1 9 8 2年联合公布的一个标准。它是当今 T C P / I P采用的主要的局域网技术。

采用 C S M A / C D的接入方法:带冲突检测的载波侦听多路接入(Carrier Sense...

车载诊断协议DoIP系列 —— AL IPv6地址分配&通用DoIP报头结构

最新发布

Soly_kun的博客

03-10

210

### 本文大体如下:

### 1、系列文章目的

### 2、AL IPv6地址分配

### 3、通用DoIP报头结构

分析俘获的本机发送的Ethernet帧和本机接收的Ethernet帧结构

05-23

下面分别对本机发送和接收的Ethernet帧结构进行分析。 1. 本机发送的Ethernet帧结构: 目的MAC地址:目的MAC地址指示了该数据包要发送到的目标设备的MAC地址。 源MAC地址:源MAC地址指示了发送该数据包的设备的...

“相关推荐”对你有帮助么?

非常没帮助

没帮助

一般

有帮助

非常有帮助

提交

weixin_34119545

CSDN认证博客专家

CSDN认证企业博客

码龄8年

暂无认证

163

原创

-

周排名

56万+

总排名

126万+

访问

等级

7235

积分

4234

粉丝

203

获赞

22

评论

1127

收藏

私信

关注

热门文章

npm降低版本(降级)

50229

excel自动调整行高和设置默认行高

20236

c语言猜数字游戏(1~100)

14048

记一个RecyclerView获取高度的问题

10613

软件实施面试题及答案

8838

最新评论

Hadoop将过时了?

炼狱第一少:

不是,你这直接明目张胆的抄袭别人的文章啊

将区间时间段拆分成以半小时为间隔的子区间

weixin_47292340:

好赞!但是发现一个问题,

第18行的

if(start[i].getTime()+30*60*1000<=end[i].getTime())

应该是 if(start[i].getTime()+30*60*1000*j <= end[i].getTime()) 吧!

拖拽上传功能的实现及原理

许失之:

小可爱,这里纠正一下下,

1. preventDefault()事件应该是为了阻止浏览器的默认处理拖拽元素方式—— '以链接形式打开',

所以两个事件都必须设置(只要有一个没有设置,就会出现打开新页面的默认行为),

2. 可否接收拖拽元素是由droppable属性决定的~

CNN卷积神经网络实现-人脸性别识别模型-可视化各层卷积特征

qq_44461081:

博主我在运行代码的时候提示train_data没有定义是哪里的问题

Android APN配置

IT界的骚小白:

请问如何查看apn对应的表 所有的数据,可以通过数据库连接工具查看吗

您愿意向朋友推荐“博客详情页”吗?

强烈不推荐

不推荐

一般般

推荐

强烈推荐

提交

最新文章

多线程编程之二——MFC中的多线程开发

对话框嵌入到对话框 或者:窗口嵌入到窗口,一个窗口嵌入到另一个窗口

iOS MVVM设计模式

2019年365篇

2018年694篇

2017年961篇

2016年542篇

2015年461篇

2014年352篇

2013年311篇

2012年262篇

2011年207篇

2010年157篇

2009年132篇

2008年82篇

2007年65篇

2006年36篇

2005年13篇

2004年4篇

目录

目录

最新文章

多线程编程之二——MFC中的多线程开发

对话框嵌入到对话框 或者:窗口嵌入到窗口,一个窗口嵌入到另一个窗口

iOS MVVM设计模式

2019年365篇

2018年694篇

2017年961篇

2016年542篇

2015年461篇

2014年352篇

2013年311篇

2012年262篇

2011年207篇

2010年157篇

2009年132篇

2008年82篇

2007年65篇

2006年36篇

2005年13篇

2004年4篇

目录

评论

被折叠的  条评论

为什么被折叠?

到【灌水乐园】发言

查看更多评论

添加红包

祝福语

请填写红包祝福语或标题

红包数量

红包个数最小为10个

红包总金额

红包金额最低5元

余额支付

当前余额3.43元

前往充值 >

需支付:10.00元

取消

确定

下一步

知道了

成就一亿技术人!

领取后你会自动成为博主和红包主的粉丝

规则

hope_wisdom 发出的红包

实付元

使用余额支付

点击重新获取

扫码支付

钱包余额

0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。 2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值

以太网数据帧格式(结构)图解

以太网数据帧格式(结构)图解

首页

C语言教程

C++教程

Python教程

Java教程

Linux入门

更多>>

首页 > 编程笔记

以太网数据帧格式(结构)图解

以太网链路传输的数据包称做以太帧,或者以太网数据帧。在以太网中,网络访问层的软件必须把数据转换成能够通过网络适配器硬件进行传输的格式。

以太帧的工作机制

当以太网软件从网络层接收到数据报之后,需要完成如下操作:

1) 根据需要把网际层的数据分解为较小的块,以符合以太网帧数据段的要求。

以太网帧的整体大小必须在 64~1518 字节之间(不包含前导码)。有些系统支持更大的帧,最大可以支持 9000 字节。有些系统支持更大的帧,最大可以支持 9000 字节。

2) 把数据块打包成帧。每一帧都包含数据及其他信息,这些信息是以太网网络适配器处理帧所需要的。

3) 把数据帧传递给对应于 OSI 模型物理层的底层组件,后者把帧转换为比特流,并且通过传输介质发送出去。

4) 以太网上的其他网络适配器接收到这个帧,检查其中的目的地址。如果目的地址与网络适配器的地址相匹配,适配器软件就会处理接收到的帧,把数据传递给协议栈中较高的层。

以太帧的结构

以太帧起始部分由前同步码和帧开始定界符组成,后面紧跟着一个以太网报头,以 MAC 地址说明目的地址和源地址。以太帧的中部是该帧负载的包含其他协议报头的数据包,如 IP 协议。

以太帧由一个 32 位冗余校验码结尾,用于检验数据传输是否出现损坏。以太帧结构如图所示。

上图中每个字段的含义如下表所示:

字段

含义

前同步码

用来使接收端的适配器在接收 MAC 帧时能够迅速调整时钟频率,使它和发送端的频率相同。前同步码为 7 个字节,1 和 0 交替。

帧开始定界符

帧的起始符,为 1 个字节。前 6 位 1 和 0 交替,最后的两个连续的 1 表示告诉接收端适配器:“帧信息要来了,准备接收”。

目的地址

接收帧的网络适配器的物理地址(MAC 地址),为 6 个字节(48 比特)。作用是当网卡接收到一个数据帧时,首先会检查该帧的目的地址,是否与当前适配器的物理地址相同,如果相同,就会进一步处理;如果不同,则直接丢弃。

源地址

发送帧的网络适配器的物理地址(MAC 地址),为 6 个字节(48 比特)。

类型

上层协议的类型。由于上层协议众多,所以在处理数据的时候必须设置该字段,标识数据交付哪个协议处理。例如,字段为 0x0800 时,表示将数据交付给 IP 协议。

数据

也称为效载荷,表示交付给上层的数据。以太网帧数据长度最小为 46 字节,最大为 1500 字节。如果不足 46 字节时,会填充到最小长度。最大值也叫最大传输单元(MTU)。

在 Linux 中,使用 ifconfig 命令可以查看该值,通常为 1500。

帧检验序列 FCS

检测该帧是否出现差错,占 4 个字节(32 比特)。发送方计算帧的循环冗余码校验(CRC)值,把这个值写到帧里。接收方计算机重新计算 CRC,与 FCS 字段的值进行比较。如果两个值不相同,则表示传输过程中发生了数据丢失或改变。这时,就需要重新传输这一帧。

构建以太帧

通过上面的学习了解了以太帧的结构。用户可以根据需要设置以太帧的字段值,从而构建以太帧。netwox 工具中编号为 32 的模块提供了以太帧构建功能。

【示例】构建以太网数据帧。

1) 查看以太网数据帧,执行命令如下:

root@daxueba:~# netwox 32

输出信息如下:

Ethernet________________________________________________________.

| 00:0C:29:CA:E4:66->00:08:09:0A:0B:0C type:0x0000           |

|____________________________________________________________   |

上述输出信息中的 00:0C:29:CA:E4:66 为源 MAC 地址,是当前主机的 MAC 地址;00:08:09:0A:0B:0C 为目标 MAC 地址,0x0000 为以太网类型。

2) 构建以太帧,设置源 MAC 地址为 00:0c:29:c4:8a:de,目标 MAC 地址为 01:02:03:04:05:06,执行命令如下:

root@daxueba:~# netwox 32 -a 00:0c:29:c4:8a:de -b 01:02:03:04:05:06

输出信息如下:

Ethernet________________________________________________________.

| 00:0C:29:C4:8A:DE->01:02:03:04:05:06 type:0x0000              |

|_____________________________________________________________    |

3) 为了验证构建的以太帧,通过 Wireshark 工具进行抓包。在链路层中可以看到伪造的源 MAC 地址和目标 MAC 地址,信息如下:

Ethernet II, Src: Vmware_c4:8a:de (00:0c:29:c4:8a:de), Dst: Woonsang_04:05:06(01:02:03:04:05:06)

4) 为了不被其他主机发现,在构造数据包时,可以指定假的源MAC地址。但是,每构造一次只能发送一个数据包。如果需要发送多个数据包,就需要构造多次。

为了方便,可以使用 macchanger 工具临时修改 MAC 地址,这样就不需要每次构造假的源 MAC 地址了。例如,将当前主机的 MAC 地址修改为 00:0c:29:aa:e0:28,执行命令如下:

Current MAC:         00:0c:29:ca:e4:66 (VMware, Inc.)

Permanent MAC:    00:0c:29:ca:e4:66 (VMware, Inc.)

New MAC:              00:0c:29:aa:e0:28 (VMware, Inc.)

以上输出信息表示当前主机原来的 MAC 地址为 00:0c:29:ca:e4:66,修改后的 MAC 地址为 00:0c:29:aa:e0:28。

5) 再次使用 netwox 工具进行发包,默认使用修改后的 MAC 地址作为源 MAC 地址,如下:

root@daxueba:~# netwox 32

输出信息如下:

Ethernet_________________________________________________

| 00:0C:29:AA:E0:28->00:08:09:0A:0B:0C type:0x0000    |

|_______________________________________________________    |

以太帧洪水攻击

交换机为了方便数据传输,通常会存储每个端口所对应的 MAC 地址,形成一张表。当交换机收到计算机发来的以太帧时,就会查看帧中的源 MAC 地址,并查找存储的表:

如果表中存在该 MAC 地址,就直接转发数据;

如果没有,则将该 MAC 地址存入该表中。

当其他计算机向这个 MAC 地址发送数据时,可以快速决定向哪个端口发送数据。由于该表不可能是无穷大的,所以当达到一定数量时,将不会储存其他新的 MAC 地址。再有新的主机发来数据帧时,部分交换机将不再查找对应的端口,而是以广播的形式转发给所有的端口。这样,就使其他主机可以接收到该数据帧了。

netwox 工具提供编号为 75 的模块,用来实现以太帧洪水攻击功能。它可以伪造大量的以太网数据包,填满交换机的存储表,使交换机失去正确的转发功能。

实施以太帧洪水攻击,执行命令如下:

root@daxueba:~# netwox 75

执行命令后没有任何输出信息,但是会发送大量的以太网数据包。

使用 Wireshark 工具进行抓包,如图所示。图中捕获的数据包为以太帧洪水攻击产生的数据包。

推荐阅读

快速排序算法,C语言快速排序算法详解

echo命令_Linux echo命令:显示文字并给文字添加颜色

Linux gunzip命令:解压缩文件或目录

V神是谁?他是以太坊创始人,是区块链界的真正大佬

Shell $*和$@之间的区别

Go语言文件锁操作

HTML