imtoken钱包下载官网地址|有机滤膜

作者: imtoken钱包下载官网地址
2024-03-08 04:52:08

滤膜的选择 - 知乎

滤膜的选择 - 知乎首发于生物科研圈切换模式写文章登录/注册滤膜的选择细胞培养专注于细胞培养,生物技术,欢迎关注和交流!无论是做无机实验,有机实验,还是理化实验,过滤操作都必不可少,如何合理快速的选择滤膜、过滤器是每一个实验工作者都必须掌握的技能,今天就和大家一起讨论如何选择微孔滤膜和过滤器。一、 微孔滤膜的材质(化学兼容性)选择微孔滤膜时,首先要考虑化学兼容性。滤膜是否耐酸、碱、有机溶剂等。几种常见滤膜的特性及应用如下所示:1. 聚醚砜滤膜(PES)·特性亲水性、高流速、高通量、低蛋白吸附、低溶出物、耐高压灭菌·应用1)一般试剂,样品的实验室过滤2)超纯水、食品、饮料等的过滤3)血清样品的过滤2. 醋酸纤维素滤膜(CA)·特性亲水性、低吸附能力、低非特异性结合能力、热稳定性·应用1)蛋白质和酶过滤2)样品前处理过滤中最为广泛使用的滤膜之一3. 混合纤维素酯滤膜(MCE)·特性亲水性、高流速、由硝酸纤维素和醋酸纤维素混合而成·应用1)微生物和颗粒分析2)无菌测试4. 硝酸纤维素滤膜 (NC)·特性亲水性、耐弱酸、高蛋白结合能力·应用1)微生物检测与捕获等2)微量元素分析等3)医学研究及诊断方面的生物工程,生化分析等5. 聚偏二氟乙烯滤膜(PVDF)·特性疏水性、高灵敏度、机械强度高、蛋白吸附低、具有良好的耐热性及化学稳定性。·应用1) 气体及蒸汽过滤, 高温液体过滤,溶剂和化学原料的净化过滤2) 油类中不溶物的净化3) 化学物质的分离和提纯6. 聚四氟乙烯滤膜(PTFE)·特性疏水性、具有广泛的化学兼容性、耐温性好、抗强酸强碱、化学腐蚀性较强的溶剂及氧化剂·应用1)化工、医药、食品、能源等领域,几乎能过滤所有的有机溶液2)强酸和强碱的过滤3)高温液体的过滤4)特殊化学试剂的过滤5)气体的澄清过滤7. 尼龙滤膜(NY)·特性亲水性、耐温性能好、强度高、化学稳定性好、耐稀酸稀碱等·应用1)样品的除菌,过滤2)工业水的过滤8. 聚丙烯滤膜(PP)·特性耐酸碱、耐磨损、耐冲击、微孔分布均匀、过滤面积大、透水性好·应用在药品、饮料、日常用水、废水、空气过滤等方面广泛应用9. 聚碳酸酯核径迹蚀刻滤膜(PCTE)·特性亲水性、有较好的化学稳定性、热稳定性、绝对孔径、半透明状薄膜、低蛋白吸附、低萃取·应用1)一般过滤2)早期癌症筛查3)血液学检测4)药品,食品,饮料,酿酒等方面的过滤、除菌细胞代谢,细胞迁移,细胞共培养的研究10. 聚酯核径迹蚀刻滤膜(PETE)·特性亲水性,有较好的化学稳定性、热稳定性、绝对孔径、半透明状薄膜、低蛋白吸附、低萃取、与PCTE相比抗溶剂性更好, 更适于过滤腐蚀性液体。·应用1)一般过滤2)血液学检测3)药品,食品,饮料,酿酒等方面的过滤、除菌4)腐蚀性样品的过滤二 滤膜的孔径具体实验中,应该根据您的过滤目的实验需求来选择合适的孔径的滤膜和滤器。0.1μm: 能去除样品中的支原体0.2μm:可以去除99.99%的细菌微生物,达到GMP或者药典的除菌要求,还可以去除样品、流动相中极细微的颗粒0.45μm: 能滤除大多数细菌微生物,对常规样品、流动相等的过滤,能满足一般色谱要求。0.8μm及以上:可以过滤较大颗粒的杂质或者难处理、浑浊样品的预处理,经预处理后再选择相应滤膜进行过滤GVS是总部位于意大利的具有40多年历史的国际性公司,于2014年收购位于美国的原Whatman 工厂。GVS生命科学提供实验室过滤和分析产品,包括微过滤产品,微生物检测产品,环境监测产品,多种材质的滤膜片和卷膜, 核酸蛋白分析转印膜,蛋白质芯片FAST全系列产品等。产品均为美国和意大利原装进口。GVS是世界上品类最齐全的微孔滤膜供应商 •产品类型:膜片和卷膜•直径:13mm--293mm•孔径:0.01μm--20μm•材质:CA、MCE、PES、NY、NC、PP、PTFE、PVDF、RC、PCTE、PETE等此外,还可以根据您的需求帮您订制大卷膜常用膜片发布于 2019-11-12 08:36过滤过滤系统过滤器​赞同 62​​15 条评论​分享​喜欢​收藏​申请转载​文章被以下专栏收录生物科研圈生命科学领域前沿资讯,欢迎来交流

微孔滤膜基本原理与分类是怎样的? - 知乎

微孔滤膜基本原理与分类是怎样的? - 知乎首页知乎知学堂发现等你来答​切换模式登录/注册微滤膜超滤膜微孔滤膜基本原理与分类是怎样的?微孔滤膜基本原理与分类是怎样的?显示全部 ​关注者7被浏览25,321关注问题​写回答​邀请回答​好问题​添加评论​分享​4 个回答默认排序赛多利斯实验室​已认证账号​ 关注微孔滤膜是生命科学领域中常见的一种重要工具,其原理及分类复杂多样,广泛应用于各种研究和实际操作中。一、基本原理1.膜过滤的原理微孔滤膜的功能基于膜过滤的原理,即当一个液体或气体在压力差的作用下通过一个半透膜时,孔径大于滤膜孔径的颗粒或分子被截留在滤膜表面或孔内,形成滤饼或吸附层,而孔径小于滤膜孔径的颗粒或分子则通过滤膜,达到分离目的。2.膜过滤的过滤机制膜过滤的过滤机制主要有三种:机械截留、吸附截留和架桥截留。机械截留:这是最直接的过滤机制,颗粒物由于大于滤膜孔径而被截留。吸附截留:这是由于颗粒物与滤膜表面的相互作用而被截留,即使颗粒物的大小小于滤膜的孔径。架桥截留:这是指多个颗粒物形成的颗粒链阻塞了滤膜孔径,即使单个颗粒物的大小小于滤膜的孔径。3.膜过滤的分类根据滤膜孔径的大小,膜过滤可以分为宏滤、微滤、超滤、纳滤和反渗透。粗滤(Macrofiltration):滤膜的孔径通常在10μm以上,主要用于去除液体中的大颗粒物质,如沉淀物、悬浮物、大型生物颗粒(如细菌和藻类)等。微滤(Microfiltration):微滤膜的孔径一般在0.1-10 μm之间,主要用于去除微生物和大颗粒物,如支原体、酵母菌等。超滤(Ultrafiltration):超滤膜的孔径在0.01-0.1 μm之间,主要用于去除大分子蛋白质和聚合物。纳滤(Nanofiltration):纳滤膜的孔径在0.001-0.01 μm之间,主要用于去除小分子有机物和离子。反渗透(Reverse Osmosis):反渗透膜的孔径小于1nm,主要用于去除溶液中的几乎所有溶质。二、应用微孔滤膜在许多领域都有广泛的应用,以下列举一些主要的应用领域。1.水处理在水处理中,微孔滤膜主要用于去除水中的悬浮物、颗粒物、微生物等。微孔滤膜可以有效地去除大部分的颗粒物,提高水质。在一些高级的水处理系统中,微孔滤膜常常与其他过滤技术(如超滤、纳滤、反渗透)结合使用,进一步提高水质。2.生物医药在生物医药领域,微孔滤膜常用于水溶液、气体和分析样品的过滤。赛多利斯提供的Minisart® 过滤器可以在几乎不影响成分的条件下对液体进行除菌过滤,例如细胞培养物、培养基、缓冲液及试剂的除菌过滤、去除支原体。Minisart® SRP使用无涂层的PTFE制成,可以作为小型的空气滤器(呼吸器)。Minisart® 标准针头过滤器还可以用于分析样本制备,例如对待分析的样品进行除颗粒操作可有效延长色谱柱的使用寿命。3.食品加工在食品加工中,微孔滤膜主要用于清除食品中的杂质和微生物,提高食品的安全性和质量。例如,在酿造过程中,微孔滤膜可以用于去除酒精发酵过程中产生的酵母和其他微生物,提高酒的纯度和口感。在乳品加工中,微孔滤膜可以用于去除牛奶中的细菌和其他微生物,确保乳品的安全性。4.环境保护在环境保护中,微孔滤膜主要用于处理工业废水和城市污水。微孔滤膜可以有效地去除废水中的悬浮物、颗粒物、有机物和微生物,减少废水对环境的污染。此外,微孔滤膜还可以用于回收废水中的有价值成分,如重金属、染料、表面活性剂等。三、微孔滤膜的分类微孔滤膜可以根据孔径大小和过滤溶剂的属性进行分类。1.根据孔径大小微孔滤膜的孔径大小是决定其过滤效果的关键因素之一。不同孔径的滤膜可以用于过滤不同大小的颗粒或微生物。常见的微孔滤膜有0.22 μm、0.45μm、0.8-1.0 μm和1-5 μm等,不同的应用需要选择不同孔径的微滤膜。0.22 μm滤膜:这是一种常用的微孔滤膜,通常用于过滤细菌。这种孔径的滤膜可以有效地过滤掉大多数常见的细菌,因此常常用于无菌过滤。0.45 μm滤膜:这种孔径的滤膜通常用于过滤大部分细菌和一些微小的颗粒。它也经常用于制备样品,比如在高效液相色谱(HPLC)分析中去除样品中的微小颗粒。0.8-1.0 μm滤膜:这种孔径的滤膜通常用于过滤较大的微生物和颗粒,例如酵母和霉菌。1-5 μm滤膜:这种孔径的滤膜通常用于过滤大颗粒,例如细胞、颗粒、沉淀物等。2.根据过滤溶剂的属性微孔滤膜的材质种类众多,不同的材质有不同的特性,因此在不同的应用中可能有不同的表现。根据过滤溶剂的属性,微孔滤膜可以分为水系微孔滤膜、有机微孔滤膜和混合通用膜。水系微孔滤膜醋酸纤维素膜(CA):具有良好的亲水性和低蛋白吸附性,常用于生物样品的过滤。聚醚砜膜(PES):具有良好的化学稳定性和热稳定性,广泛应用于生物医药领域,如蛋白质和酶的过滤。有机微孔滤膜聚四氟乙烯膜(PTFE):具有极好的化学稳定性,可以耐受大多数的酸、碱和有机溶剂,但其孔结构较松散,适合气体过滤。混合通用膜尼龙膜(NY):对很多有机溶剂和某些酸有良好的耐受性,但对一些强碱可能不太耐受。再生纤维素膜(RC):对许多有机溶剂和酸碱具有良好的耐受性。由于其良好的亲水性,RC滤膜可以直接用于水或水溶液的过滤,无需预湿化。3.如何选择微孔滤膜选择微孔滤膜需要考虑多个因素,包括以下几点:孔径大小:选择适当的孔径大小是非常重要的,这取决于你需要过滤的物质的大小。滤膜材质:滤膜的材质也是一个重要的选择因素,不同的材质有不同的化学稳定性、热稳定性和机械强度。流量和压力:滤膜的流量和压力是决定滤膜性能的重要参数。高流量和低压力的滤膜通常更适合大规模的工业应用。耐污染性:滤膜的耐污染性是决定滤膜寿命的重要因素。如果你需要处理的液体中含有大量的悬浮物或颗粒物,可能需要选择具有高耐污染性的滤膜。成本:滤膜的价格也是一个需要考虑的因素。在满足应用需求的前提下,应尽量选择性价比高的滤膜。兼容性:滤膜需要与过滤系统的其他组件(如泵、管道等)兼容,以确保整个系统的效率和稳定性。总的来说,选择微孔滤膜需要根据你的具体应用需求和条件来做出决定。发布于 2023-09-05 12:00​赞同 10​​添加评论​分享​收藏​喜欢收起​透气透声膜厂家深圳市戈埃尔科技有限公司专注防水透气、防水透声膜模切辅料​ 关注微孔滤膜基本上是用纤维素或高分子材料制成的,利用微孔滤膜上均匀分布的孔径(孔径根据要分离的物质去合理选择),通过合理的孔径大小来截留水中的微小固体颗粒与微生物等,使其不能通过微孔滤膜而被去除。决定微孔滤膜的分离效果的是膜材料的本身结构也就是孔的形状和大小。微孔滤膜的规格目前有十多种,孔径可以在0.1~75 μm根据要过滤的液体去选择,膜厚在120~150μm去选择。微孔滤膜的种类有:聚丙烯微孔滤膜、混合纤维酯微孔滤膜、醋酸纤维素滤膜、玻纤微孔滤膜、再生纤维素微孔滤膜、PTFE聚四氟乙烯滤膜以及MCE微孔滤膜等。微孔滤膜发布于 2021-02-23 10:34​赞同 2​​添加评论​分享​收藏​喜欢收起​​

滤膜中的有机系和水系区别在哪里? - 知乎

滤膜中的有机系和水系区别在哪里? - 知乎首发于环境污染处理切换模式写文章登录/注册滤膜中的有机系和水系区别在哪里?世来至福滤膜中的有机系和水系区别在哪里?  微孔过滤膜Sartorius Series Membrane Filters  再生纤维素膜(Regenerated Cellulose Membranes,RC)为疏水型滤膜,具有 非特异性吸附低,特别适合于除微粒过滤,其化学兼容性强,可以耐受大多数有机溶剂,其化学兼容性如下表所示。直径50mm和47mm,孔径0.45μm作为标准用于溶剂的超净和脱气过滤以及HPLC 流动相的过滤。主要用于有机溶剂的过滤。  醋酸纤维素膜(Cellulose Acetate Membranes,CA)具有很高的流速和热稳定性以及非常低的吸附。0.2μm的滤膜非常适合于水溶液、缓冲液、血清和培养基的除菌过滤。0.45μm的滤膜非常适合于HPLC的流动相过滤。关于得到膜吸附的公开结果是比较困难的,其与过滤的物质、过滤的条件和采用的测定方法以及被测定的膜没有被预先除菌有关。主要用于水相溶液的过滤。  硝酸纤维素(Cellulose Nitrate Membranes,CN)是非常好的滤膜材料,其能够提供非常一致的孔径结构和宽的孔径规格。大的孔径(8μm,5μm和 3μm)用于趋药性和细胞截留,0.45μm用于微粒收集,最小的孔径(0.1μm)用于溶液的超净过滤和光散射测量。这种类型滤膜所具有的非特异性吸附性能使其非常利于许多印迹处理过程和诊断试剂的应用。用于样品预处理,颗粒检测或除颗粒。  尼龙膜(Polyamide Membranes,Nylon)具有非常好的机械强度,吸附性强,能耐受大多数有机溶剂和多数碱性溶液,特别适合于碱性溶液的过滤。用于有机溶剂过滤,如HPLC流动相除颗粒过滤时,尼龙膜比PTFE膜更经济实用,另外,尼龙膜还可以作为转印膜。由于尼龙膜的吸附性能相对较高,一般不推荐用于培养基过滤、或蛋白液等生物样品的过滤,以免因吸附而损失样品。在这种情况下,通常采用低吸附的醋酸纤维素膜(CA),更为适用。用于碱性溶液和有机溶剂过滤。  聚四氟乙烯膜(PTFE Membranes,PTFE)采用完全由天然永久疏水的PTFE材质,即使在很低的压差下,也能保证潮湿空气或其它气体通行无阻,而水溶液则不能透过。其性能与亲水膜正好相反。PTFE滤膜具有极强的化学兼容性,几乎能胜任所有的有机溶剂和强腐蚀化学品的过滤。在必须用PTFE滤膜过滤水相溶液时,必须先用乙醇或异丙醇预浸润后,水相溶液才能滤过。用于空气、气体和疏水性化学品的过滤。  玻璃纤维滤膜(Glass Fiber Filters,GF)属于深层过滤,其主要用途是作为于过滤层,直接加在过滤膜上使用。注意:不同尺寸的滤器对预过滤膜的直径都有具体的要求,直径过大时,其边缘会伸到密封圈下引起漏液。用于提高过滤通过率和连续过滤。发布于 2021-11-30 17:06超滤膜​赞同 11​​添加评论​分享​喜欢​收藏​申请转载​文章被以下专栏收录环境污染处理保护环境,人

适用于有机溶剂过滤的几种滤膜 - 知乎

适用于有机溶剂过滤的几种滤膜 - 知乎切换模式写文章登录/注册适用于有机溶剂过滤的几种滤膜hengshui88网络营销微滤膜的材质分为有机和无机两大类,有机聚合物有醋酸纤维素、聚丙烯、聚碳酸酯、聚醚砜、聚酰胺等。无机膜材料有陶瓷和金属等。鉴于微孔滤膜的分离特征,微孔滤膜的应用范围主要是从气相和液相中截留微粒、细菌以及其他污染物,以达到净化、分离、浓缩的目的。对于微滤而言,膜的截留特性是以膜的孔径来表征,通常孔径范围在0.1~1微米,故微滤膜能对大直径的菌体、悬浮固体等进行分离。可作为一般料液的澄清、保安过滤、空气除菌过滤。聚四氟乙烯膜(PTFE)滤芯分亲水PTFE膜、疏水PTFE膜绝对精度广泛化学相容性适用:气体除菌过滤,各种酸、碱、有机溶剂的过滤聚偏二氟乙烯膜(PVDF)滤芯分亲水PVDF膜、疏水PVDF膜绝对精度广泛化学相容性适用:气体除菌过滤,各种酸、碱、有机溶剂的过滤尼龙膜(N6N66)滤芯带电荷膜分N6、N66两种膜绝对精度适用:有机溶剂的过滤,液体除菌过滤什么是有机溶剂有机溶剂是指一类由有机物为介质的溶剂。有机溶剂是能溶解一些不溶于水的物质它包括多类物质,如链烷烃、烯烃、醇、醛、胺、酯、醚、酮、芳香烃、氢化烃、萜烯烃、卤代烃、杂环化物、含氮化合物及含硫化合物等等,多数对人体有一定毒性。工业生产中经常应用的有机溶剂约有百余种。如苯、甲苯、二甲苯、乙苯、苯乙烯、环己烷、环己酮、氯苯、二氯甲烷、四氯化碳、汽油、煤油、甲醇、乙醇、醋酸乙酯、醋酸丁酯、丙酮、二甲基乙酰胺、二硫化碳等。有机溶剂的种类从19世纪40年代用于工业生产以来,先进工业有机溶剂的种类已达30000余种,其中最常用的约500种。除广泛用于清洗、去污、稀释和萃取等过程外,很多有机溶剂也作为中间体用于化学合成。常用的有机溶剂包括:①烃类:如脂肪烃、环烷烃、芳香烃和混合烃等;② 卤代烃:如卤代烷、卤代烯;③ 醇类:如甲醇;④酮类:如丙酮;⑤醚类:如乙醚;⑥其他: 如二硫化碳。有机溶剂的特性(1)挥发性、可溶性和易燃性有机溶剂多具有挥发性,接触途径以吸人为主。脂溶性是有机溶剂的重要特性,进入体内易于神经组织亲和而具有麻醉作用;有机溶剂又具有水溶性, 故易经皮肤进入体内。有机溶剂大多具有可燃性,如汽油、乙醇等,可用作染料;但有些则属非可燃物而用作灭火剂。(2)化学机构按化学机构将有机溶剂分为若干类, 同类者毒性相似,如氯代烃类多具有肝脏毒性,醛类具有刺激性等。有机溶剂的基本化学机构为脂肪族、脂环族和芳香族;其功能团包括卤素、醇类、酮类、乙二醇类、酯类、羧酸类、胺类和酰胺类基团。(3)吸收与分布挥发性有机溶剂经呼吸道吸入后有40%~80%在肺内滞留,体力劳动时, 经肺摄入量增加2~3倍。有机溶剂多具脂溶性,摄入后分布于富含脂肪的组织, 包括神经系统、肝脏等; 由于血一组织膜屏蔽富含脂肪,有机溶剂也分布于血流充足的骨骼和肌肉组织;肥胖者接触有机溶剂后,在体内蓄积量增多, 排出慢。此外, 大多数有机溶剂可通过胎盘,亦可经母乳排出,从而影响胎儿和乳儿健康。(4)生物转化与排除不同个体的生物转化能力有差异,机体对不同溶剂的代谢速率各异,有些可充分代谢,有些则几乎不被代谢。生物转化与有机溶剂的毒作用密切相关。有机溶剂主要以原形物经呼出气排出,少量以代谢物形式经尿排出。多数有机溶剂的生物半减期较短,一般从数分钟至数天,故生物蓄积对大多数有机溶剂来说, 不是影响毒作用的重要因素。发布于 2020-09-18 14:31有机溶剂​赞同 4​​添加评论​分享​喜欢​收藏​申请

有机微孔滤膜_百度百科

滤膜_百度百科 网页新闻贴吧知道网盘图片视频地图文库资讯采购百科百度首页登录注册进入词条全站搜索帮助首页秒懂百科特色百科知识专题加入百科百科团队权威合作下载百科APP个人中心收藏查看我的收藏0有用+10有机微孔滤膜播报讨论上传视频高分子聚合物在特殊工艺条件下制成的筛网型精密滤材本词条缺少概述图,补充相关内容使词条更完整,还能快速升级,赶紧来编辑吧!有机溶剂微孔滤膜为高分子聚合物在特殊工艺条件下制成的一种耐各种有机溶剂的筛网型精密滤材,它可以在液相、气相中分离、净化、富集微粒、异物、飘尘、气溶胶,广泛应用医药卫生、生物化学、微电子工业、环境保护等部门。中文名有机微孔滤膜适用领域医药卫生、生物化学、微电子工业、环境保护等部门目录1产品性能2产品规格3使用说明产品性能播报编辑1、产品化学性能稳定,适应范围广。将滤膜在室温下使用,下列化学浸泡72小时后,检查外观不发生膨胀、溶解、变形、破坏或变质。(1)酸类:1%硝酸、1%硫酸、1%盐酸、20%磷酸、25%醋酸、4—氨基水杨酸。(2)碱类:50%氢氧化钠、75%醋酸钾、25%氢酸三甲。(3)醇类:甲醇、乙醇、正乙醇、甘油、十二烷基醇。(4)酯类:醋酸甲酯、醋酸乙酯、醋酸丙酯、醋酸丁酯、醋酸戊酯、肉豆菀酸异丙酯、甲基缩乙二醇醋酸酯、磷酸二苯基甲苯酯、磷酸三甲苯酯。(5)酮类:丙酮、环已酮、甲乙酮、甲基异丙基酮、甲基丙基酮。(6)碳氢化合物:戌烷、已烷、苯、甲苯、煤油、汽油、十氢萘。(7)卤代烃类:三氯乙烷、氯仿、四氯化碳、三氯乙烯、过氯乙烯、一氯化苯、三氯化苯、四氢化苯。(8)有机含氧化物:乙醚、四氯呋喃、二氧七环已烷、二氧六环。(9)油类:花生油、蓖麻油、有机硅油。(10)其它:氨基苄青莓素钠(钾)液、先锋霉素液、霉素蜡酸丁酯二次提取液、喷气式发动机燃料、显影剂、光致抗蚀剂、氟里昂、93%二甲基甲酰胺。2.ZN型滤膜在25℃时,按实际生产过滤膜与溶剂比的5000倍,醇类、酯类、酮类等有机溶剂和30%氢氧化钠溶液中,有型滤膜在有机溶剂和强碱性溶液中物化性能稳定。3.产品化学毒性和生物毒性合格。(注:强度不作检测标准)产品规格播报编辑成品尺寸:可切成方形或圆形。使用说明播报编辑ZN型滤膜使用前可用下列方法灭菌:(1)121℃蒸汽热压消毒30分钟,再用乙醇浸泡湿润。(2)用2.5Mradr-射线或紫外线照射灭菌,再用乙醇浸泡湿润。(3)90%氧化乙烯+10%二氧化碳,在压力1Kg/cm,剂量800克/ms处理4小时,再用乙醇浸泡湿润。(4)用3%甲醇溶液浸泡24小时,随后用孔径0.45um的滤过蒸馏水洗涤,再用乙醇浸泡湿润。3.产品正常使用温度≤120℃。4.产品具有较强的静电荷,能在空气中吸附灰尘,不使用时应包好,放于干燥清洁处。新手上路成长任务编辑入门编辑规则本人编辑我有疑问内容质疑在线客服官方贴吧意见反馈投诉建议举报不良信息未通过词条申诉投诉侵权信息封禁查询与解封©2024 Baidu 使用百度前必读 | 百科协议 | 隐私政策 | 百度百科合作平台 | 京ICP证030173号 京公网安备110000020000

Filter Membranes

er MembranesPHENProductsApplicationsServicesDocumentsSupportAnalytical ChemistryCell Culture & AnalysisChemistry & BiochemicalsClinical & DiagnosticsFiltrationGreener Alternative ProductsIndustrial MicrobiologyLabwareMaterials ScienceMolecular Biology & Functional GenomicsmRNA Development & ManufacturingPharma & Biopharma ManufacturingProtein BiologyWater PurificationAnalytical ChemistryCell Culture & AnalysisChemistry & Synthesis Clinical & DiagnosticsEnvironmental & Cannabis TestingFood & Beverage Testing & ManufacturingGenomicsMaterials Science & EngineeringMicrobiological TestingmRNA Development & ManufacturingPharma & Biopharma ManufacturingProtein BiologyResearch & Disease AreasContract ManufacturingContract TestingCustom ProductsDigital Solutions for Life ScienceIVD Development & ManufacturingmRNA Development & ManufacturingProduct ServicesSupportSafety Data Sheets (SDS)Certificates of Analysis (COA)Certificates of Origin (COO)Certificates of Quality (COQ)Customer SupportContact UsFAQSafety Data Sheets (SDS)Certificates (COA/COO)Quality & RegulatoryCalculators & AppsWebinarsHomeProductsFiltrationLaboratory Filter MembranesFilter MembranesFilter MembranesProduced by the precipitation or stretching of polymeric materials, membrane filters are commonly used in both industry and research. Properties of membrane filters vary widely with differences in composition, surface treatments, and pore size. Selecting the ideal filter requires an understanding of basic characteristics. We offer an extensive collection of Millipore® and Whatman™ membranes for filtration.  

Membrane Filter Characteristics     

Filter Membrane Types

ProductsProduct CategoryDiameter (mm)HydrophobicityManufacturerMembrane MaterialSterilityPore size (µm)BrandSort by RelevanceShowing 1-20 of 61Page 1 of 4Page 1 of 4Filter & SortShowing 1-20 of 61CompareProduct NumberProduct NameProduct DescriptionPricingZ290793Nylon filter membranespore size 0.45 μm, diam. 47 mm, pack of 100ExpandView PricingZ290807Nylon filter membranespore size 0.22 μm, diam. 47 mm, pack of 100ExpandView PricingZ290823Nylon filter membranespore size 0.2 μm, diam. 25 mmExpandView PricingCLS3950Pyrex® fiber glass woolborosilicate glass fiber (BGF), pore size 8 μmExpandView PricingZ290815Nylon filter membranespore size 0.45 μm, diam. 25 mmExpandView PricingJGWP09025PTFE Membrane Filter, 0.2 μm Pore SizeOmnipore, filter diam. 90 mm, hydrophilicExpandView PricingZ623040Sterlitech silver metal membranespore size 0.45 μm, diam. 13 mmExpandView PricingWHA111103Whatman® Nuclepore™ Track-Etched Membranesdiam. 47 mm, pore size 0.050 μm, polycarbonateExpandView PricingJHWP02500PTFE Membrane Filter, 0.45 μm Pore SizeOmnipore, filter diam. 25 mm, hydrophilicExpandView PricingZ290785Nylon filter membranespore size 0.45 μm, diam. 90 mmExpandView PricingWHA800307Whatman® Nuclepore™ Track-Etched Membranesdiam. 19 mm, pore size 0.03 μm, polycarbonateExpandView PricingJCWP02500PTFE Membrane Filter, 10.0 μm Pore SizeOmnipore, filter diam. 25 mm, hydrophilicExpandView PricingAAWG0250CMCE Membrane Filter, 0.8 μm Pore SizeMF-Millipore™, filter diam. 25 mm, hydrophilic, white, gridded, 150 μg/cm2 binding capacity (protein)ExpandView PricingJGWP14225PTFE Membrane Filter, 0.2 μm Pore SizeOmnipore, filter diam. 142 mm, hydrophilicExpandView PricingWHA150446Whatman® Nuclepore™ Track-Etched Membranesdiam. 13 mm, pore size 8.0 μm, polycarbonate - PVP freeExpandView PricingSVWG04700PVDF Membrane Filter, 5.0 μm Pore SizeDurapore®, filter diam. 47 mm, hydrophilic, white, griddedExpandView PricingTSTP14250Polycarbonate Membrane Filter, 3.0 μm Pore SizeIsopore™, filter diam. 142 mm, hydrophilicExpandView PricingFALP09050PTFE Membrane Filter, 1.0 μm Pore SizeFluoropore®, filter diam. 90 mm, hydrophobicExpandView PricingFSLW09025PTFE Membrane Filter, 3.0 μm Pore SizeFluoropore®, filter diam. 90 mm, hydrophobicExpandView PricingWHA111101Whatman® Nuclepore™ Track-Etched Membranesdiam. 47 mm, pore size 0.015 μm, polycarbonateExpandView PricingPage 1 of 4Page 1 of 4 MEMBRANE FILTER CHARACTERISTICS

Chemical compatibility: The filter material must be compatible with the chemical nature of both the liquid and dissolved solutes being filtered to avoid structural failure.

Wettability: Hydrophilic membranes are easily wet with water and are preferred for filtering aqueous solutions. Hydrophobic membranes are recommended for gas filtration, low surface tension solvents, and venting, and can be wet in organic solvents such as methanol, allowing both aqueous liquids and organic solvents to pass through.

Pore Size: Pore size provides an indication of largest pore diameter and can be related to the membrane’s ability to filter out particles of a certain size.

0.1 µm: mycoplasma removal

o 0.20 to 0.22 µm: filter sterilization and ultracleaning of aqueous solutions and organic solvents (e.g., HPLC)

0.45 µm: clarification of aqueous solutions and organic solvents

0.8 µm: coarse particulate removal and removal of bacteria

100 µm: removal of sand, activated carbon, bead resins

Diameter: The diameter, size, and shape of the filter are selected based on the apparatus used for filtration. Disc filters, syringe filters, extractors, and bottle top filtration devices have specified diameters for membrane filters.

Flow rate: Defined as the time required for the flow stream to pass through the filter, flow rate is critical in determining how rapidly a filtration can be completed. Membrane material, thickness, porosity, and pore architecture can all lead to differences in flow rate.

Optical properties: When visually analyzing retentates, membrane optical properties must be compatible with the imaging method in order to provide a consistent background and reduce noise.

Color: Filter color selection can provide appropriate contrast for easy and reliable identification and quantitation. Black filters provide distinction between light colored particles and microorganisms. White filters provide distinction between blue, red, and darker microbes and particulates. Green filters offer a background for viewing black, white, and colorless particles.

Binders: Commonly used in non-woven, fiber-based materials, binders provide shape and strength to the final product.

Organic binders provide higher wet strength and lower fiber release for high pressure filtration.

Inorganic binders impart high thermal and chemical stability and inertness to microbiological degradation compared to organic binders.

Cellulose acetate membranes are ideal for biological and clinical analysis, sterility tests, and scintillation measurements. They exhibit very low protein binding affinity and are recommended for low protein binding applications. Solvent- and heat-resistant up to 180 ºC, these membrnaes are suitable for the filtration of either aqueous cell culture and alcoholic media.

Cellulose nitrate membranes are recommended for general filtration applications including buffer filtration and feature low extractable levels and a narrow pore size distribution. While nitrocellulose is often considered to be brittle and thermally instable, these filters offer increased strength and flexibility as well as thermal stability up to 121 °C, allowing them to be autoclaved without shrinkage or integrity loss. Cellulose nitrate membrane filters feature high protein binding, which may result in sample loss when filtering biological samples.

Mixed cellulose ester (MCE) membrane filters are composed of both cellulose acetate and cellulose nitrate and are biologically inert, low binding, and thermally stable with a high loading capacity, making them an ideal choice for a variety of filtration applications including aqueous solution clarification, particle counting, HPLC sample filtration, and microbial analysis. For applications requiring manual particulate or colony counting, a gridded surface and color contrast facilitates particle detection and minimizes eye fatigue.

Polyethersulfone (PES) membranes are known for their thermal stability, durability, and resistance to acidic and alkaline solutions. Millipore Express® PLUS hydrophilic polyethersulfone (PES) membranes are commonly used as an alternative to cellulose membranes and offer fast flow, high filter capacity, and low protein binding while remaining bacterially retentive.

Polytetrafluoroethylene (PTFE) membranes have high strength and broad chemical compatibility, and are commonly used to clarify aqueous solutions, organic solvents, corrosives, and aggressive fluids. Hydrophilic PTFE membranes are typically used in filtering aqueous solutions, while hydrophobic PTFE membranes are typically used for filtering organic solvents and gases as well as particle monitoring.

Nylon and polyamide membranes offer broad compatibility, strength, flexibility, and hydrophilicity with low extractables, and are routinely used for the filtration of aqueous and organic solutions for use in HPLC and other analytical methods. They can exhibit high protein and small molecule binding and are not recommended for biological samples.

PVDF membranes are utilized in a variety of biomedical research applications. Available in both hydrophilic and hydrophobic formats, Durapore® membrane filters provide high flow rates and throughput, low extractables, and broad chemical compatibility. Hydrophilic Durapore® membranes exhibit very low protein binding and are used to filter protein solutions. Conversely, hydrophobic Durapore® membranes exhibit high protein binding.

Regenerated cellulose membranes are hydrophilic, spontaneously wet in water, and feature strong chemical resistance for filtering both aqueous and organic solutions. They are commonly used for filtering HPLC solvents and solutions. Regenerated cellulose membrane filters can be sterilized and have low protein binding and extractables, enabling their use with biological samples.

Polycarbonate membrane filters are produced from a smooth, glass-like polycarbonate film and are recommended for all analyses in which the sample is viewed on the surface of the membrane, such as optical or electron microscopy. The unique membrane manufacturing process (track-etching) ensures a precise and consistent pore diameter for accurate sample separation by size. These membrane filters are commonly used in trace element and particulate analysis, gravimetric analysis, water analysis, and general filtration.

Polypropylene membrane and net filters feature both solvent-compatibility and thermal stability. These filters are ideally suited for general solution clarification and prefiltration applications, including bioburden reduction. Millipore® polypropylene membrane and net filters provide high particle retention and dirt holding capacity, as well as a low pressure drop. While these filters are designed for use with organic solvents, they can also be used for the filtration of aqueous solutions, after wetting with an alcohol.

Polyvinylidene chloride (PVC) filters are preferentially used with gravimetric analysis to quantify silica, carbon black, or quartz air particulates. Millipore® PVC membrane filters are produced from high-quality PVC and have been developed for use with ASTM, NIOSH, and OSHA air monitoring methods.

Alumina oxide membrane filters are non-toxic and compatible with most solvents and aqueous solutions. The precise, nondeformable, honeycomb pore structure eliminates lateral crossover between pores, ensuring exact filter cut-offs and a narrow pore size distribution. These membrane filters exhibit low protein binding, have minimal autofluorescence, become virtually transparent when wet, and support cellular growth. Whatman™ Anodisc™ membrane filters are available with a bonded polypropylene support ring to allow for easier handling

Glass fiber filters are produced from borosilicate glass fibers and are typically used as depth filters in prefiltration of large particulate or viscous solutions. The addition of binders can improve the wet strength for filtering heavily contaminated solutions but renders the filter unsuitable for gravimetric analysis or hot gas filtration due to mass loss upon heating. Glass fiber filters without a binder resin can be heated up to 500 °C without mass loss.

Quartz fiber filters are manufactured from pure quartz fibers, preventing any surface filter reaction with acidic gases. Due to their inertness, quartz fiber filters are well suited for measuring heavy metal concentrations and small particle quantities. Quartz fiber filters also exhibit good weight and form stability and are commonly used in air sampling and trace element analysis.

Silver membrane filters are ideal for applications involving aggressive fluids and/or high temperatures and are specified in National Institute for Occupational Safety and Health (NIOSH) standards for the analysis of crystalline and amorphous silica, lead sulfide, boron carbide, and chrysotile asbestos.

FILTER MEMBRANE TYPES

Alumina oxide membrane filters are non-toxic and compatible with most solvents and aqueous solutions. The precise, nondeformable, honeycomb pore structure eliminates lateral crossover between pores, ensuring exact filter cut-offs and a narrow pore size distribution. These membrane filters exhibit low protein binding, have minimal autofluorescence, become virtually transparent when wet, and support cellular growth. Whatman™ Anodisc™ membrane filters are available with a bonded polypropylene support ring to allow for easier handling.**

Cellulose acetate membranes are ideal for biological and clinical analysis, sterility tests, and scintillation measurements. They exhibit very low protein binding affinity and are recommended for low protein binding applications. Solvent- and heat-resistant up to 180 ºC, these membranes are suitable for the filtration of either aqueous cell culture and alcoholic media.

Cellulose nitrate membranes are recommended for general filtration applications including buffer filtration and feature low extractable levels and a narrow pore size distribution. While nitrocellulose is often considered to be brittle and thermally instable, these filters offer increased strength and flexibility as well as thermal stability up to 121 °C, allowing them to be autoclaved without shrinkage or integrity loss. Cellulose nitrate membrane filters feature high protein binding, which may result in sample loss when filtering biological samples.

Glass fiber filters are produced from borosilicate glass fibers and are typically used as depth filters in the prefiltration of large particulate or viscous solutions. The addition of binders can improve the wet strength for filtering heavily contaminated solutions but renders the filter unsuitable for gravimetric analysis or hot gas filtration due to mass loss upon heating. Glass fiber filters without a binder resin can be heated up to 500 °C without mass loss.**

Mixed cellulose ester (MCE) membrane filters are composed of both cellulose acetate and cellulose nitrate and are biologically inert, low binding, and thermally stable with a high loading capacity, making them an ideal choice for a variety of filtration applications including aqueous solution clarification, particle counting, HPLC sample filtration, and microbial analysis. For applications requiring manual particulate or colony counting, a gridded surface and color contrast facilitates particle detection and minimizes eye fatigue.

Nylon and polyamide membranes offer broad compatibility, strength, flexibility, and hydrophilicity with low extractables, and are routinely used for the filtration of aqueous and organic solutions for use in HPLC and other analytical methods. They can exhibit high protein and small molecule binding and are not recommended for biological samples.

Polycarbonate membrane filters are produced from a smooth, glass-like polycarbonate film and are recommended for all analyses in which the sample is viewed on the surface of the membrane, such as optical or electron microscopy. The unique membrane manufacturing process (track-etching) ensures a precise and consistent pore diameter for accurate sample separation by size. These membrane filters are commonly used in trace element and particulate analysis, gravimetric analysis, water analysis, and general filtration.**

Polyethersulfone (PES) membranes are known for their thermal stability, durability, and resistance to acidic and alkaline solutions. Millipore Express® PLUS hydrophilic polyethersulfone (PES) membranes are commonly used as an alternative to cellulose membranes and offer fast flow, high filter capacity, and low protein binding while remaining bacterially retentive.

Polypropylene membrane and net filters feature both solvent-compatibility and thermal stability. These filters are ideally suited for general solution clarification and prefiltration applications, including bioburden reduction. Millipore® polypropylene membrane and net filters provide high particle retention and dirt holding capacity, as well as a low pressure drop. While these filters are designed for use with organic solvents, they can also be used for the filtration of aqueous solutions, after wetting with an alcohol.**

Polytetrafluoroethylene (PTFE) membranes have high strength and broad chemical compatibility, and are commonly used to clarify aqueous solutions, organic solvents, corrosives, and aggressive fluids. Hydrophilic PTFE membranes are typically used in filtering aqueous solutions, while hydrophobic PTFE membranes are typically used for filtering organic solvents and gases as well as particle monitoring.

Polyvinylidene chloride (PVC) filters are preferentially used with gravimetric analysis to quantify silica, carbon black, or quartz air particulates. Millipore® PVC membrane filters are produced from high-quality PVC and have been developed for use with ASTM, NIOSH, and OSHA air monitoring methods.**

PVDF membranes are utilized in a variety of biomedical research applications. Available in both hydrophilic and hydrophobic formats, Durapore® membrane filters provide high flow rates and throughput, low extractables, and broad chemical compatibility. Hydrophilic Durapore® membranes exhibit very low protein binding and are used to filter protein solutions. Conversely, hydrophobic Durapore® membranes exhibit high protein binding.

Quartz fiber filters are manufactured from pure quartz fibers, preventing any surface filter reaction with acidic gases. Due to their inertness, quartz fiber filters are well suited for measuring heavy metal concentrations and small particle quantities. Quartz fiber filters also exhibit good weight and form stability and are commonly used in air sampling and trace element analysis.**

Regenerated cellulose membranes are hydrophilic, spontaneously wet in water, and feature strong chemical resistance for filtering both aqueous and organic solutions. They are commonly used for filtering HPLC solvents and solutions. Regenerated cellulose membrane filters can be sterilized and have low protein binding and extractables, enabling their use with biological samples.

Silver membrane filters are ideal for applications involving aggressive fluids and/or high temperatures and are specified in National Institute for Occupational Safety and Health (NIOSH) standards for the analysis of crystalline and amorphous silica, lead sulfide, boron carbide, and chrysotile asbestos.

Related Product Resources

Catalog: Filters and Supporting Hardware

Related Product CategoriesFilter PaperWhatman® filter papers for qualitative and quantitative analysis.Laboratory Sample CollectionProtect and manage your samples with solutions including vials, tubes, bottles, dishes, plates, boxes, and racks for collection, transport, tracing, and storage needs.Laboratory Filter HoldersElevate filtration: glass, stainless steel, plastic filter holders for liquid, gas. Syringe, in-line, vacuum, pressure choices await.Related ApplicationsAir MonitoringAir monitoring is used to measure the level of air pollutants in environmental, industrial, or indoor settings to assess the air quality per standards established by health and regulatory agencies.Drinking Water Testing​Clean drinking water is essential for food and beverage production. This article gives an overview of chemical and microbiological testing of the drinking water for quality and safety.Wastewater & Process Water​ TestingWater treatment is required to maintain effluent compliance with standards established by regulatory bodies. Learn about the stages of wastewater and process water treatment along with the corresponding analytical testing methods.Soil, Solid Waste & Groundwater TestingSoil and groundwater testing are crucial to avoid adverse impact on the environment and human health. Learn about the importance of solid waste management and methods used for soil and groundwater testing for heavy metals and other environmental pollutants.Chemical Analysis for Food and Beverage TestingDiscover the application of analytical techniques involved in the chemical analysis of food and beverages for safety, authenticity, and quality assurance.Sample Preparation by FiltrationFiltration separates substances based on physical or chemical properties. Lab samples are routinely filtered before analysis to reduce sample complexity and increase analyte purity. This allows scientists to generate higher quality analytical results.Highlights

Slide 1 of 2How-To Video: Sidedness of a Membrane Learn how to determine which side of an Asymmetric Membrane faces up or into the oncoming liquid stream of your solution.Filter Membrane Differences Blue and White DisksLearn how to differentiate between the Blue and White Cut Disks Membrane Filters. TopSign In To ContinueTo continue reading please sign in or create an account.Sign InDon't Have An Account?Regis

Millipore® Filter Membranes

ipore® Filter MembranesPHENProductsApplicationsServicesDocumentsSupportAnalytical ChemistryCell Culture & AnalysisChemistry & BiochemicalsClinical & DiagnosticsFiltrationGreener Alternative ProductsIndustrial MicrobiologyLabwareMaterials ScienceMolecular Biology & Functional GenomicsmRNA Development & ManufacturingPharma & Biopharma ManufacturingProtein BiologyWater PurificationAnalytical ChemistryCell Culture & AnalysisChemistry & Synthesis Clinical & DiagnosticsEnvironmental & Cannabis TestingFood & Beverage Testing & ManufacturingGenomicsMaterials Science & EngineeringMicrobiological TestingmRNA Development & ManufacturingPharma & Biopharma ManufacturingProtein BiologyResearch & Disease AreasContract ManufacturingContract TestingCustom ProductsDigital Solutions for Life ScienceIVD Development & ManufacturingmRNA Development & ManufacturingProduct ServicesSupportSafety Data Sheets (SDS)Certificates of Analysis (COA)Certificates of Origin (COO)Certificates of Quality (COQ)Customer SupportContact UsFAQSafety Data Sheets (SDS)Certificates (COA/COO)Quality & RegulatoryCalculators & AppsWebinarsHomeProductsFiltrationLaboratory Filter MembranesMillipore® Filter MembranesMillipore® Filter MembranesSlide 1 of 6 Membrane filters, produced by precipitation or stretching of polymeric materials, are used for a variety of applications (e.g. filtration, air particle monitoring). Properties of membranes differ markedly based upon their composition, fabrication method, surface treatment, and pore size.   

Membrane Filter Characteristics

Prefiltration and Depth Filters

Filter Membrane Types

 

NEED HELP FINDING THE CORRECT MEMBRANE FILTER FOR YOUR APPLICATION?

Use our Membrane Learning Center tool to view and compare membranes by pore size, chemical compatibility, flow rate, extractables and more.

ProductsProduct CategoryColorAgencyDiameter (mm)HydrophobicityMembrane MaterialPore size (µm)BrandSort by RelevanceShowing 1-20 of 35Page 1 of 2Page 1 of 2Filter & SortShowing 1-20 of 35CompareProduct NumberProduct NameProduct DescriptionPricing58188Cellulose Filter Membranepore size 0.22 μm, diam. 47 mm, pkg of 100ExpandView PricingZ358657Filter membranes, nitrocelluloseMF membrane, pore size 0.22 μm, diam. 293 mmExpandView PricingZ368024Cellulose acetate membranedialyser capacity 500-1,500 μL, MWCO 500 Da, diam. 16 mmExpandView PricingZ355534Filter membranes for microbiological analysispore size 0.45 μm (HA), S-Pak, White with black grid surfaceExpandView PricingZ355542Filter membranes for microbiological analysispore size 0.45 μm (HA), S-Pak, Black with white grid surfaceExpandView PricingJGWP09025PTFE Membrane Filter, 0.2 μm Pore SizeOmnipore, filter diam. 90 mm, hydrophilicExpandView PricingJHWP02500PTFE Membrane Filter, 0.45 μm Pore SizeOmnipore, filter diam. 25 mm, hydrophilicExpandView PricingJCWP02500PTFE Membrane Filter, 10.0 μm Pore SizeOmnipore, filter diam. 25 mm, hydrophilicExpandView PricingAAWG0250CMCE Membrane Filter, 0.8 μm Pore SizeMF-Millipore™, filter diam. 25 mm, hydrophilic, white, gridded, 150 μg/cm2 binding capacity (protein)ExpandView PricingJGWP14225PTFE Membrane Filter, 0.2 μm Pore SizeOmnipore, filter diam. 142 mm, hydrophilicExpandView PricingSVWG04700PVDF Membrane Filter, 5.0 μm Pore SizeDurapore®, filter diam. 47 mm, hydrophilic, white, griddedExpandView PricingTSTP14250Polycarbonate Membrane Filter, 3.0 μm Pore SizeIsopore™, filter diam. 142 mm, hydrophilicExpandView PricingFALP09050PTFE Membrane Filter, 1.0 μm Pore SizeFluoropore®, filter diam. 90 mm, hydrophobicExpandView PricingFSLW09025PTFE Membrane Filter, 3.0 μm Pore SizeFluoropore®, filter diam. 90 mm, hydrophobicExpandView PricingJAWP02500PTFE Membrane Filter, 1.0 μm Pore SizeOmnipore, filter diam. 25 mm, hydrophilicExpandView PricingJCWP01300PTFE Membrane Filter, 10.0 μm Pore SizeOmnipore, filter diam. 13 mm, hydrophilicExpandView PricingPP4509030Polypropylene Membrane Filter, 45.0 μm Pore SizeMillipore, filter diam. 90 mm, hydrophilicExpandView PricingPVC504700PVC Membrane Filter, 5.0 μm Pore SizeMillipore, filter diam. 47 mm, hydrophobicExpandView PricingAPFB03700Glass Fiber Membrane Filter, 1.0 μm Pore SizeMillipore, filter diam. 37 mm, hydrophilicExpandView PricingFHLP09050PTFE Membrane Filter, 0.45 μm Pore SizeFluoropore®, filter diam. 90 mm, hydrophobicExpandView PricingPage 1 of 2Page 1 of 2Custom Order Request Membrane Filter Characteristics

Chemical Compatibility: The filter material must be compatible with the chemical nature of the substance being filtered to avoid structural failure. It is important to consider both the compatibility of liquid samples and dissolved solutes that can interact with the membrane.

Wettability: For liquid filtration, the membrane must be wettable with the fluid being filtered. Hydrophilic membranes are easily wet with water and are preferred for filtering aqueous solutions. Hydrophobic membranes are recommended for gas filtration, low surface tension solvents, and venting, and can be wet in organic solvents such as methanol, allowing filtration of both aqueous liquids and organic solvents.

Pore Size: Pore size provides an indication of the largest pore diameter and can be related to the membrane’s ability to filter out particles of a certain size. Bubble point and bacterial retention testing are two commonly used methods for measuring pore size.

Diameter: The diameter, size, and shape of the filter are selected based on the apparatus used for filtration or sample collection.

Flow Rate: Defined as the time required for the flow stream to pass through the filter, flow rate may be measured for air or liquid. Flow rate generally decreases with smaller pore size, but altering membrane material, thickness, porosity, and pore architecture can lead to differences in flow rate.

Analyte Binding: Analyte binding refers to the loss of analytes during filtration, resulting in a filtrate with a different molecular composition than expected. Membranes with limited functionality (e.g. PVDF, PTFE) show very low analyte binding, whereas membranes with higher functionality (e.g. nylon, MCE) show a high level of analyte binding)

Optical Properties: When visually analyzing retentates, membrane optical properties must be compatible with the imaging method, such that the membrane provides a consistent background over the entire sample surface and does not impart additional noise during testing.

Extractables: Extractables are contaminants present in the final filtrate that originate in the filter or device. Filter extractables occur as three different types: shedding of filter materials or particulate extractables, residual chemicals from the manufacturing process, and surface modification chemistries washing off the filter. The presence of extractables can also be related to the chemical compatibility of the membrane with the solution being filtered. Generally, if a membrane is not chemically compatible with the solution, a higher level of extractables is observed in the filtrate.

Retentiveness: Retentiveness is the ability of a membrane to retain the particle or molecule of interest. 

Prefiltration and Depth Filters

Prefiltration: Prefiltration utilizes large pore membrane filters to remove large particulates, such as dirt or sediment, from samples prior to filtration with a smaller pore membrane filter. Using prefiltration in sample preparation can prevent premature filter clogging or fouling.

Depth filters: Depth filters retain particles internally rather than on the filter surface. Due to their high particle retention capacity, depth filters are frequently used for prefiltration.

Binders: Commonly used in non-woven, fiber-based materials, binders provide shape and strength to the final product. While binders are routinely used in glass fiber filters, these additives reduce thermal stability and can result in sample contamination by extractables.

Net Filters: With large and uniform pores, the net-like structure of net filters is used to remove large particulates (e.g. cells, proteins, dirt) for solution clarification of particulate analysis.

Filter Membrane Types

Reinforced cellulose membranes (RW filters) are rigid screen filters. Their rigidity, high-capacity, and low pressure drop make RW filters ideal for the removal of contaminants from heavily contaminated liquids and gasses, particularly for prefiltration.

Cellulose support pads are used to reinforce filters in monitors for contamination analysis, specifically during high pressure or fast flow conditions. When saturated with growth medium, they can also be used for microorganism culture. Woven mesh spacers are placed between filters during serial filtration to prevent the downstream screen filter from “blinding” the upstream filter pores, increasing flow rate and throughput.

Glass fiber filters are produced from borosilicate glass fibers and are typically used to filter large particles or viscous solutions. In addition to a wide variety of flow rates and capacities, we also offer filters both with and without binder resin. While the addition of binder resin improves the wet strength for filtering heavily contaminated solutions, the resin renders the filter unsuitable for gravimetric analysis or hot gas filtration due to mass loss upon heating. Glass fiber filters without a binder resin can be heated up to 500 °C without mass loss.

MF-Millipore™ mixed cellulose esters (MCE) membrane filter discs, produced from biologically inert cellulose acetate and cellulose nitrate, are a versatile choice for biological, analytical, and environmental monitoring as well as research applications. With a consistent thickness, uniform pore structure, and smoother surface than pure nitrocellulose membranes, hydrophilic MF-Millipore™ membranes are available in a variety of pore sizes, colors, surfaces, and diameters. MFMillipore™ membranes without Triton® surfactant contain minimum amounts of wetting agent and have a lower water extractable content than standard MF-Millipore™ filters.

Nylon membranes and net filters ** are made from the same material but utilize two different processing methods. Due to this difference, nylon net filters possess a uniform, large pore structure (similar to a mesh), a pore size ≥5.0 μm, and a reduced thickness in comparison to nylon membrane filters.

Isopore™ polycarbonate membrane filters offer well-defined pores and a smooth transparent surface ideal for use with optical or electron microscopy.

Millipore Express® PLUS polyethersulfone (PES) membrane filters are commonly used as an alternative to cellulose membranes and are known for their thermal stability, durability and resistance to acidic and alkaline solutions. Millipore Express® PLUS PES membranes offer fast flow, high filter capacity and low protein binding, while remaining bacterially retentive. The unique asymmetric structure of Millipore Express® PLUS membranes extends filtration capacity and lifetime, allowing them to tolerate higher particle loads and protein concentrations.

Millipore® polypropylene membranes and net filters feature both solvent-compatibility and thermal stability. Constructed from pristine polypropylene material, these filters are ideally suited for general solution clarification and prefiltration applications, including bioburden reduction. Millipore® polypropylene membrane and net filters provide high particle retention and dirt holding capacity, as well as a low pressure drop.

Polytetrafluoroethylene (PTFE) ** is a chemical-resistant, flexible, thermally resistant, non-adherent, high-strength fluoropolymer produced from the free-radical polymerization of tetrafluoroethylene. Due to its strength and broad chemical compatibility, PTFE is commonly used in membrane filters. While PTFE is known for its high strength, the addition of a high-density polyethylene (HDPE) backing offers improved filter handling characteristics. Hydrophilic LCR and Omnipore™ PTFE membranes are typically used for filtering aqueous solutions. Both Fluoropore™ hydrophobic PTFE and Mitex™ hydrophobic PTFE membranes can be used for filtering organic solvents and gases. Fluoropore™ membranes and PTFE for PM2.5 are also used for particle monitoring.

Millipore® polyvinylidene chloride (PVC) membranes, due to their low weight and low water adsorption, are preferentially used with gravimetric analysis to quantify silica, carbon black, or quartz air particulates. Millipore® PVC membrane filters are produced from high-quality PVC and have been developed for use with ASTM, NIOSH, and OSHA air monitoring methods.

Durapore® polyvinylidene fluoride (PVDF) filter membranes, available in both hydrophilic and hydrophobic formats, provide high flow rates and throughput, low extractables and broad chemical compatibility. Due to their solvent and heat resistance, Durapore® PVDF membranes are utilized in a variety of biomedical research applications. Hydrophilic Durapore® membranes exhibit very low protein binding as compared to nylon, nitrocellulose or PTFE membranes. Hydrophobic Durapore® filter membranes exhibit high protein binding.

Quartz fiber filters are manufactured from pure quartz fibers, preventing any surface filter reaction with acidic gases. Due to their inertness, quartz fiber filters are well suited for measuring heavy metal concentrations and small particle quantities. Quartz fiber filters also exhibit good weight and form stability.

Silver membrane filters, made from pure silver, are highly resistant to thermal stress and aggressive chemicals, while providing a low background for sensitive X-ray diffraction analysis. Silver membranes are specified in many standardized air monitoring methods from government organizations (e.g., NIOSH, OSHA) for monitoring carbon black, coal tar products, coke oven emissions, and silica.

Strat-M® membrane is a synthetic, non-animal based model for transdermal diffusion testing that is predictive of diffusion in human skin without lot-to-lot variability, safety or storage limitations.

Related Product Resources

User Guide: Chemical Compatibility of Filter Components

Brochure: Experience the Unmatched Predictability of Strat-M Membrane

Data Sheet: AD030 Air and Fluid Particle Monitoring Guide

Article: AD030 Particle Monitoring Guide – Analysis Techniques – Microscope-Based Techniques

Article: Millipore® Patch Test Kit: Field-Based Sampling and Contamination Analysis

Article: Retentate filtration with Millicup™-FLEX disposable vacuum filtration units

Catalog: Filters and Supporting Hardware

Related VideosSlide 1 of 5Fluid Sampling for Contamination MonitoringThe Millipore® Fluid Sampling Kit is used for direct fluid sample collection prior to contamination analysis. Compatible with the collection of turbine fuels, water or other liquids, samples are collected from quick-release valves installed in the system line with a portable stainless-steel sampler assembly. After drying and removal from the sampler assembly, the resulting sample can be used in gravimetric or colorimetric analysis.Retentate Filtration with Millicup™-FLEX Disposable Vacuum Filtration UnitsThe Millicup™-FLEX filter unit provides a disposable and time saving alternative to traditional glass vacuum filtration systems. The filter unit consists of a fully recyclable polypropylene funnel and a recyclable ribbed membrane support collar suitable for most filtration applications. Its unique construction enables faster flow rates compared to glass.Field-Based Sampling and Contamination Analysis with Millipore® Patch Test KitThe Millipore® Patch Test Kit is a complete solution for the field-based collection and analysis of hydrocarbon-based hydraulic fluids, hydraulic oils, bulk chemicals, boiler water, and lubricating oils. This portable system allows for the dependable detection of contamination through sensitive, colorimetric analysis.Air Monitoring with Millipore® Stainless-Steel Aerosol Filter HoldersMillipore® 47 mm stainless-steel aerosol filter holders were designed for sampling large particle volumes, such as those found in a dust-containing environment requiring protective clothing. These reusable filter holders utilize 47 mm filters and are available in two different configurations. The open-face configuration allows for maximum, unimpeded flow during sampling, while the closed-face configuration allows for optimum particle distribution on the filter.Millipore® Aerosol Monitors for Air MonitoringDepending on the particle of interest and environment, different sampling methods, air monitors, and membrane materials are used. Millipore® monitoring devices (37 mm and 25 mm) and membranes are designed for use in variety of standard testing methods, including those from NIOSH, ASTM™, EPA, or OSHA™.Related Product CategoriesLaboratory Filter HoldersAn extensive selection of glass, stainless steel, and plastic filter holders for use with cut disc membrane filters for liquid and gas filtration, including syringe filter holders, in-line filter housings, and filter holders for vacuum and pressure filtration.Filter PaperWhatman® filter papers for qualitative and quantitative analysis.Vacuum FiltersBottle-top vacuum filtration units and systems for routine filtration of buffers, solvents, and culture media, syringeless filters for HPLC and UHPLC sample preparation, pressure filter funnels for solute and compound drying, and analytical filter funnels for microbiological testing.SolventsBrowse through our comprehensive range of solvents offered under three portfolio brands for your various applications: Supelco® for analytical methods, Sigma-Aldrich® for classic research and production, and SAFC® for biopharmaceutical and pharmaceutical applications. Order online.Air Monitoring Devices & TubesWe offer high-quality air monitoring products for ambient, indoor air, and workplace environments. Our range of products includes active, passive, and whole air sampling devices; air sampling pumps, and related accessories.Syringe FiltersHigh performance sterile and nonsterile syringe filters offered in a variety of membrane materials and pore sizes, tailored for sample preparation for HPLC, UHPLC, ion chromatography, dissolution testing, and other analyses.Millex® Syringe FiltersMillex® syringe filters are available in sterile and nonsterile formats, offered in many membrane and housing options to enable compatibility with multiple solvents and sample types for applications including HPLC, UHPLC, and dissolution testing.Related ApplicationsLarge Molecule HPLCHigh performance liquid chromatography (HPLC) can be used to separate and identify different large biomolecules such as protein and peptides in a sample. It is based on the pumping of a sample with a solvent (mobile phase) through a column packed with sorbent material (stationary phase) at a high pressure.Small Molecule HPLCSmall molecules are ions and compounds of molecular weight typically less than 900 daltons. These compounds can be effectively separated and analyzed by HPLC, UHPLC and LC-MS using mainly silica particles or monolithic stationary phases with a broad range of column chemistries (modifications).Wastewater & Process Water​ TestingWater treatment is required to maintain effluent compliance with standards established by regulatory bodies. Learn about the stages of wastewater and process water treatment along with the corresponding analytical testing methods.Soil, Solid Waste & Groundwater TestingSoil and groundwater testing are crucial to avoid adverse impact on the environment and human health. Learn about the importance of solid waste management and methods used for soil and groundwater testing for heavy metals and other environmental pollutants.Air MonitoringAir monitoring is used to measure the level of air pollutants in environmental, industrial, or indoor settings to assess the air quality per standards established by health and regulatory agencies.Drinking Water Testing​Clean drinking water is essential for food and beverage production. This article gives an overview of chemical and microbiological testing of the drinking water for quality and safety.Chemical Analysis for Food and Beverage TestingDiscover the application of analytical techniques involved in the chemical analysis of food and beverages for safety, authenticity, and quality assurance.Sample Preparation by FiltrationFiltration separates substances based on physical or chemical properties. Lab samples are routinely filtered before analysis to reduce sample complexity and increase analyte purity. This allows scientists to generate higher quality analytical results. TopSign In To ContinueTo continue reading please sign in or create an account.Sign InDon't Have An Account?Regis

Chem Soc Rev:有机分子筛膜用于化学分离- X-MOL资讯

Chem Soc Rev:有机分子筛膜用于化学分离- X-MOL资讯

EN

注册

登录

文献直达

发Paper

求职

问答

导师

期刊

资讯

首页

资讯

资讯搜索

当前位置 : X-MOL首页 › 行业资讯 › Chem Soc Rev:有机分子筛膜用于化学分离

Chem Soc Rev:有机分子筛膜用于化学分离

材料

作者:X-MOL    

2021-03-22

膜技术是解决人类面临的能源、资源、环境和传统产业升级转型等领域重大挑战的共性技术之一。分子级别的分离,如二氧化碳捕集、烯烃/烷烃分离、共沸物分离,因其亚纳米混合物组成、埃级尺寸差异、物理化学性质相似等特性,已成为膜领域的重要发展方向与公认难题。原则上,所有用于分子分离过程的膜均可称为分子筛分膜。近年来,随着筑网化学等平台化学的出现,新兴微孔有机材料(如固有孔高分子、多孔有机笼、共价有机框架、多孔芳香框架等),在分子分离领域展示出非凡前景。新兴微孔有机材料作为膜构筑单元具有以下优势:(1)具有刚性、易裁剪的周期性网络或框架结构;(2)可依据分子尺寸、反应活性等理化性质差异进行分离,不受trade-off效应制约;(3)具有良好的应用稳定性,理论上可抵御应用过程中膜结构的不利演变。近日,天津大学化工学院姜忠义教授(点击查看介绍)团队在国际学术期刊Chemical Society Reviews(IF=42.8)发表了题为“Organic molecular sieve membranes for chemical separations”的长篇综述论文。首次提出了有机分子筛膜(Organic Molecular Sieve Membranes, OMSMs)的全新概念,并结合有机分子筛膜的共性、个性和应用需求,凝练出“STEM”(刚柔相济、尺寸可控、亲疏平衡、活性适中)核心导则,用于指导有机分子筛膜的全链条设计和贯通式研究(图1)。图1. STEM导则下的有机分子筛膜结构精密构筑和高效过程强化该综述聚焦全链条设计和贯通式研究,系统总结了近期有机分子筛膜的研究进展,主要包括:(1)基于成键作用强度,从筑网化学、点击化学、超分子化学和模块化学等方面阐述了平台化学在有机分子筛膜结构精密构筑过程的应用;(2)从有机分子筛膜的主体结构、通道结构和表面结构对多级结构构筑过程的设计原则进行了分析;(3)基于成膜过程中作用力类型,从物理、化学两个角度系统介绍了有机分子筛膜的组装方法,并分析比较了不同方法的优势与局限性;(4)重点分析了膜与目标分子相互作用、传统传质机制及新兴传质机制;(5)根据组分相态,将有机分子筛膜的分离应用分为气体分子混合物分离和液体分子混合物分离,总结了有机分子筛膜在分子分离领域的代表性应用,并讨论了目前存在的主要挑战;(6)依据全链条设计和贯通式研究原则,从平台化学、可裁剪性、规整性、多孔性、成膜性、完整性、稳定性、传质机制、渗透性-选择性、可放大性等八个层面,分析、比较了不同种类分子筛膜的共性和个性。最后,该综述围绕“膜结构精密构筑”与“膜高效过程强化”两大区块,从材料基因组学与人工智能、结晶性调控、膜孔道精密构筑与调控、生物启发下的限域传质、膜放大制备与稳定性、应用体系拓展等层面对有机分子筛膜进行了前瞻分析,明确指出,有机分子筛膜以其化学多样性、通道规整性、结构可设计性及良好的应用稳定性将成为新一代的分子分离膜材料,有机分子筛膜的研究开发将成为膜领域的前沿和热点。天津大学为本论文第一单位,论文第一作者为天津大学王洪建博士研究生和王梅迪博士研究生,通讯作者为天津大学姜忠义教授。相关研究获得国家自然科学基金和国家重点研发计划等项目支持。原文(扫描或长按二维码,识别后直达原文页面,或点此查看原文):Organic molecular sieve membranes for chemical separationsHongjian Wang, Meidi Wang, Xu Liang, Jinqiu Yuan, Hao Yang, Shaoyu Wang, Yanxiong Ren, Hong Wu, Fusheng Pan, Zhongyi Jiang*Chem. Soc. Rev., 2021, DOI: 10.1039/d0cs01347a通讯作者简介姜忠义,天津大学化工学院教授。长江学者讲座教授,国家杰出青年基金获得者,国家“万人计划”科技创新领军人才,新世纪百千万人才国家级人选,享受政府特殊津贴人员,侯德榜化工科学技术奖获得者,天津市优秀科技工作者标兵,天津市杰出津门学者,英国皇家化学会会士。国家科技部创新团队负责人,国家基金委创新群体学术骨干。国家重点研发计划项目首席科学家。长期从事仿生与生物启发下的膜和膜过程研究。负责承担了国家重点研发计划项目、国家863重大项目课题、国家基金重点项目、国家基金重大项目课题、国家基金国际合作项目,中石油、中石化、中海油委托项目等科研项目。发表SCI论文500余篇,论文被SCI他引21,000 余次,H因子81。作为第一完成人获省部级科技奖一等奖四项。任Journal of Membrane Science,Green Chemical Engineering,膜科学与技术、化学学报、化工进展等期刊编委。连续入选中国高被引学者(化学工程)榜单,并入选全球高被引学者(化学工程)榜单。姜忠义https://www.x-mol.com/university/faculty/13315 课题组网址http://www.jiang-lab.com/ 

如果篇首注明了授权来源,任何转载需获得来源方的许可!如果篇首未特别注明出处,本文版权属于

X-MOL

x-mol.com

),

未经许可,谢绝转载!

  点击分享

收藏

取消收藏

评论:

0

友情链接:

学术期刊

行业资讯

全球导师

X-MOL问答

求职广场

网址导航

关于我们

帮助中心

客服邮箱:service@x-mol.com

官方微信:X-molTeam2

邮编:100098

地址:北京市海淀区知春路56号中航科技大厦

        

Copyright © 2014-2024 北京衮雪科技有限公司 All Rights Reserved    

京ICP备11026495号-2

    

京公网安备 11010802027423号

down

wechat

bug

bug

Recent progress of organic solvent nanofiltration membranes,Progress in Polymer Science - X-MOL

Recent progress of organic solvent nanofiltration membranes,Progress in Polymer Science - X-MOL

EN

注册

登录

首页

资讯

期刊

导师

问答

求职

发Paper

文献直达

高级搜索

期刊列表

搜索

当前位置:

X-MOL 学术

Prog. Polym. Sci.

论文详情

Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)

Recent progress of organic solvent nanofiltration membranes

Progress in Polymer Science

(

IF

27.1

)

Pub Date : 2021-10-07

, DOI:

10.1016/j.progpolymsci.2021.101470

Gui Min Shi, Yingnan Feng, Bofan Li, Hui Min Tham, Juin-Yih Lai, Tai-Shung Chung

Solvent separations present one of the largest opportunities for membrane technologies. Currently, industries use millions of tons of solvents for the manufacture of drugs, oils and chemicals. Multiple separations and purifications must be conducted in order to purify the products from the solvents. However, the existing separation processes are energy-intensive. Organic solvent nanofiltration (OSN) or solvent-resistant nanofiltration has emerged as an energy-efficient alternative to the existing processes. We have summarized the recent advances in the fabrication of state-of-the-art polymeric membranes including integrally skinned asymmetric membranes, thin film composite membranes and nanocomposite membranes in this review. The separation performances of OSN membranes continue to push the boundary in terms of high solvent permeances and rejections to various solutes. The advancements have been achieved through novel membrane materials and innovative fabrication methods. We have also discussed the future outlook of OSN processes and pointed out the potential areas for further research exploration.

中文翻译:

有机溶剂纳滤膜的最新进展

溶剂分离是膜技术的最大机遇之一。目前,工业使用数百万吨的溶剂来制造药物、油和化学品。为了从溶剂中纯化产物,必须进行多次分离和纯化。然而,现有的分离过程是能源密集型的。有机溶剂纳滤 (OSN) 或耐溶剂纳滤已成为现有工艺的节能替代品。在这篇综述中,我们总结了制造最先进聚合物膜的最新进展,包括整体蒙皮不对称膜、薄膜复合膜和纳米复合膜。OSN 膜的分离性能在高溶剂渗透性和对各种溶质的截留率方面继续突破界限。这些进步是通过新型膜材料和创新制造方法实现的。我们还讨论了 OSN 过程的未来前景,并指出了进一步研究探索的潜在领域。

更新日期:2021-10-21

  点击分享

  查看原文

点击收藏

取消收藏

新增笔记

阅读更多本刊最新论文

本刊介绍/投稿指南

全部期刊列表>>

学术期刊

行业资讯

全球导师

X-MOL问答

求职广场

网址导航

关于我们

帮助中心

客服邮箱:service@x-mol.com

官方微信:X-molTeam2

邮编:100098

地址:北京市海淀区知春路56号中航科技大厦

        

Copyright © 2014-2024 北京衮雪科技有限公司 All Rights Reserved    

京ICP备11026495号-2

    

京公网安备 11010802027423号

down

wechat

bug

bug

我院在高性能有机溶剂纳滤膜研制方面取得重要进展

我院在高性能有机溶剂纳滤膜研制方面取得重要进展

显示时间的位置

首页

学院概况

学院简介

年度大事记

历任领导

现任领导

组织结构

学科简介

专业介绍

校友之家

校庆专题

历届校友

校友风采

师资队伍

师资概况

师资结构

博士生导师

硕士生导师

博士后

兼职教授

杰出人才

人才培养

本科生培养

最新通知

培养目标及毕业要求

课程资源

实践教学

毕业设计

第二课堂

对外交流

下载中心

教师入口

研究生培养

消息公告

培养方案

培养平台

教学管理

下载专区

招生就业

本科生招生

本科生就业

研究生招生

研究生就业

教学成果

2021纺织教学成果奖材料

2022天津市教学成果奖材料

2023纺织教学成果奖材料

2023天津市教学名师申报

精品课程

科学研究

科研概况

科研概况

科研团队

科研动态

科研平台

省部共建分离膜与膜过程国家重点实验室

分离膜科学与技术国际联合研究中心

中空纤维膜材料与膜过程教育部重点实验室

中空纤维膜材料与膜过程天津市重点实验室

天津市先进纤维与储能技术重点实验室

膜分离技术协同创新中心

全国示范性工程专业学位研究生联合培养基地

天津市氟塑料企业重点实验(共建)

天津市聚酯新材料技术工程中心(共建)

天津市海洋生物基功能纤维开发与应用技术工...

研究成果

科研成果

成果转化和项目推广

合作与交流

下载中心

党群工作

党委简介

党委简介

组织结构

工作动态

学习园地

入党导航

党建风采

统战工作

下载专区

纪委工作

组织机构

工作动态

政策法规

警钟长鸣

学生工作

团委工作

就业工作

学生日常管理

下载中心

合作交流

学术会议

合作办学

国际交流

国内合作

English Version

School Profile

Dean's message

Programmes

信息服务

部门联系方式

常用电话

下载中心

师资队伍相关下载

保卫处相关下载

科学研究相关下载

国资管理相关下载

2019年纺织教学成果奖申报材料

国资处相关资料下载

Q&A

English

School Profile

Dean's message

Programmes

Leading teachers

Research areas

Contact us

我院在高性能有机溶剂纳滤膜研制方面取得重要进展

发布时间:2022-09-28文章来源:材料科学与工程学院浏览:90

     近日,国际知名期刊《德国应用化学》(Angew. Chem. Int. Ed., IF: 16.823)在线发表了我校分离膜与膜过程国家重点实验室胡云霞研究员团队与英国爱丁堡大学Neil B. McKeown教授合作完成的题目为“2,2’-Biphenol-based Ultrathin Microporous Nanofilms for Highly Efficient Molecular Sieving Separation”的学术论文(Shao-Lu Li, Guoliang Chang, Yangzheng Huang, Ken Kinooka, Yanting Chen, Wenming Fu, Genghao Gong,* Tomohisa Yoshioka, Neil B. McKeown,* and Yunxia Hu*, Angew. Chem. Int. Ed., 2022, e202212816. DOI: 10.1002/anie.202212816 and 10.1002/ange.202212816)。Angewandte Chemie International Edition是目前国际化学领域最具影响力的综合性刊物之一,且为中科院TOP期刊。     有机溶剂纳滤是一种高效节能,操作简便,易模块化与规模化应用的新型膜分离技术,在化工、制药、能源、环境等相关领域展现出巨大的应用潜力,可大幅度降低分离过程的能耗和碳排放,有望成为实现“双碳”目标的关键支撑技术之一。     耐溶剂膜材料是有机溶剂纳滤技术的核心。针对现有有机溶剂纳滤膜普遍存在的溶剂渗透性差,分离精度低等挑战,本工作从膜材料分子设计入手,首次合成了具有2,2'-联苯酚(BIPOL)刚性结构的两种小分子,采用易工业化的界面聚合制膜技术,制备了超薄无缺陷、且具有高微孔性的联苯酚耐溶剂纳滤膜(~5 nm),用于有机溶剂体系的筛分。所研制的联苯酚耐溶剂纳滤膜具有超高的甲醇渗透系数(13~17.5 LMH/bar),且较低的截留分子量(~233 Da),显著优于目前文献报道的有机溶剂纳滤膜的筛分水平。令人兴奋的是,该聚联苯酚纳滤膜可以实现分子量、尺寸相近的甲基橙(MO, 327 Da)和亚甲基蓝(MB, 320 Da)的精准筛分,其分离机理为尺寸排阻与道南效应的共同作用。本工作所研制的聚联苯酚纳滤膜具有规模化放大生产的潜力,在特种分离如药物分子精准分离方面有巨大的应用前景。图1  采用联苯酚水相单体通过界面聚合制备超薄无缺陷且具有高微孔性的联苯酚耐溶剂纳滤膜示意图图2  联苯酚耐溶剂纳滤膜的筛分性能     该工作的第一作者为我院青年教师李少路,胡云霞研究员、龚耿浩研究员、Neil B. McKeown教授为论文共同通讯作者,天津工业大学为第一完成单位。本工作受到国家自然科学基金(No. 21978215)、天津市教委科研计划(No.2019KJ006)以及天津市科技计划(No. 20ZYJDJC00100)项目的资助。本工作感谢我校分析测试中心在分析测试方面给予的大力支持!撰稿人:胡云霞 审稿人:高辉

Copyright © 2017, http://clxy.tiangong.edu.cn/, All Rights Reserved

版权所有:天津工业大学 材料科学与工程学院

地址:天津市西青区宾水西道399号 邮编:300387